474 Notes on Day 3 slides:

Slide 3: Boolean (Propositional) Logic Wffs
Note that $P \rightarrow Q$ is an abbreviation for $\neg P \vee Q$. What does $P \leftrightarrow Q$ abbreviate?

Slide 6: Inference riles

More on soundness and completeness later

Slide 9: First-order logic

Note that the definition is recursive, so proofs about wffs are likely to be by induction.
On board:
Example of a ternary predicate:
Pythagorean (a, b, c) is true iff $a^{2}+b^{2}=c^{2}$.
Pythagorean($5,12,13$) has no free variables, Pythagorean $(x, y, 13)$ has free variables
For last bullet, consider: $\exists x(\exists y(x \in \mathbb{N} \wedge y \in \mathbb{N} \wedge$ Pythagorean $(\mathrm{x}, \mathrm{y}, 13))) . \mathrm{x}$ and y are bound by the \exists quantifier here.

We can abbreviate this $\exists \mathrm{x}, \mathrm{y} \in \mathbb{N}$ (Pythagorean $(\mathrm{x}, \mathrm{y}, 13)$)
Slide 10: Sentences
The first is a sentence, if we assume that Smokey is a constant
True
True
False
True (if we assume that "exists" is not temporal)
Slide 11: interpretations and models
An interpretation of the sentence on this page is the integers, with < assigned to the normal < predicate.
Note that we use infix $\mathrm{x}<\mathrm{y}$ instead of the formal $<(\mathrm{x}, \mathrm{y})$.
What about the sentence $\exists x\left(\forall y\left(x^{*} y=0\right)\right)$? A model for this sentence is the integers with the normal meanings of $=, 0$, and *.
Note that this involves assigning a value to the constant 0 in the expression.
Slide 12 Examples
First one is valid, independent of the values of P, Q, and Smokey
Second is invalid
Third depends on D,I. Example: satisfied by (integers, <=), but not (integers, <)
Slide 23: Fibonacci Running time
Point out that the initial formula for C is given by a recurrence relation
Use induction.
Base cases, $\mathrm{N}=3, \mathrm{~N}=4$
Assume by induction that if $N>=3$, then C_{N} and $\mathrm{C}_{\mathrm{N}+1}$ are the right things. Show that $\mathrm{C}_{\mathrm{N}+2}$ is the right thing.
$C_{N+2}=1+C_{N}+C_{N+1}=\left(F_{N+2}+F_{N-1}-1\right)+\left(F_{N+3}+F_{N}-1\right)+1=F_{N+4}+F_{N+1}-1=F_{N+2+2}+F_{N+2-1}-1$

