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MA/CSSE 474

Theory of Computation

More Math Review

Many of today's ICQ questions involve 
working with another student.  Find a 

partner and sit beside that person.

Logic: Propositional and 
first-order

From Rich, Appendix A

Most of this material also appears in Grimaldi's Discrete Math book, 
Chapter 2
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Boolean (Propositional) Logic Wffs

1. A propositional symbol (variable or constant) is a wff. 

2. If P is a wff, then ¬P is a wff.

3. If P and Q are wffs, then so are:

P ∨ Q, P ∧ Q, P → Q, P ↔ Q, and (P).

A wff (well-formed formula) is any string that is formed 

according to the following rules:

P Q ¬¬¬¬P P ∨∨∨∨ Q P ∧∧∧∧ Q P →→→→ Q P ↔↔↔↔ Q

True True False True True True True

True False False True False False False

False True True True False True False

False False True False False True True

When Wffs are True

• A wff is valid or is a tautology iff it is true for all 

assignments of truth values to the variables it contains. 

• A wff is satisfiable iff it is true for at least one 

assignment of truth values to the variables it contains.  

• A wff is unsatisfiable iff it is false for all assignments 

of truth values to the variables it contains. 

• Two wffs P and Q are equivalent, written P ≡ Q, iff

they have the same truth values for every assignment 

of truth values to the variables they contain.     

Q1

P ∨ ¬P is a tautology: 
P ¬¬¬¬P P ∨∨∨∨ ¬¬¬¬P

True False True

False True True
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Entailment

A set S of wffs logically implies or entails a conclusion Q

iff, whenever all of the wffs in S are true, Q is also true.  

Example:

{A ∧ B ∧ C, D} entails A → D

Inference Rules

• An inference rule is sound iff, whenever it is 
applied to a set A of axioms, any conclusion 
that it produces is entailed by A.  

• An entire proof is sound iff it consists of a 
sequence of inference steps each of which 
was constructed using a sound inference rule.  

• A set of inference rules R is complete iff, 
given any set A of axioms, all statements that 
are entailed by A can be proved by applying 
the rules in R.  

Q2
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Some Sound Inference Rules

• Modus ponens: From (P → Q) and P, 

conclude Q.

• Modus tollens: From (P → Q) and ¬Q, 

conclude ¬P.

• Or introduction: From P, conclude (P ∨ Q). 

• And introduction: From P and Q, conclude

(P ∧ Q).

• And elimination: From  (P ∧ Q), conclude P

or conclude Q.

• Syllogism: From  (P → Q) and (Q → R) , 
conclude (P → R) .

Additional Sound Inference Rules

• Quantifier exchange:

• From ¬∃x (P), conclude ∀x (¬P).

• From ∀x (¬P), conclude ¬∃x (P).

• From ¬∀x (P), conclude ∃x (¬P).

• From ∃x (¬P), conclude ¬∀x (P) .

• Universal instantiation: For any constant C, from 
∀x (P(x)), conclude P(C).

• Existential generalization: For any constant C, 
from P(C) conclude ∃x (P(x)).
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First-Order Logic

• If P is an n-ary predicate and each of the expressions 

x1, x2, … , xn is a term, then an expression of the form 

P(x1, x2, … , xn) is a wff.  If any variable occurs in such 

a wff, then that variable occurs free in P(x1, x2, … , xn) .  

• If P is a wff, then ¬P is a wff.

• If P and Q are wffs, then so are P ∨ Q, P ∧ Q, P → Q, 

and P ↔ Q.

• If P is a wff, then (P) is a wff.

• If P is a wff, then ∀x (P) and ∃x (P) are wffs.  Any free 

instance of x in P is bound by the quantifier and is then 

no longer free. 

A term is a variable, constant, or function application.

A well-formed formula (wff) in first-order logic is an 

expression that can be formed by:

Q3

Sentences

1. Bear(Smokey).

2. ∀x (Bear(x) → Animal(x)).

3. ∀x (Animal(x) → Bear(x)).

4. ∀x (Animal(x) → ∃y (Mother-of(y, x))).

5. ∀x ((Animal(x) ∧ ¬Dead(x)) → Alive(x)).

A wff with no free variables is called a sentence or a 

statement. 

A ground instance is a sentence that contains no 

variables, such as #1

Which of these sentences are true in the everyday world?

Q4
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Interpretations and Models
• An interpretation for a sentence w is a pair (D, I), where  D

is a universe of objects.  I assigns meaning to the symbols 
of w: it assigns values, drawn from D, to the constants in w
and it assigns functions and predicates (whose domains 
and ranges are subsets of D) to the function and predicate 
symbols of w.

• A model of a sentence w is an interpretation that makes w
true.  For example, let w be the sentence:

∀x (∃y (y < x)).  

• A sentence w is valid iff it is true in all interpretations.

• A sentence w is satisfiable iff there exists some
interpretation in which w is true. 

• A sentence w is unsatisfiable iff ¬w is valid. 

Q5

Examples

• ∀x ((P(x) ∧ Q(Smokey)) → P(x)).

• ¬(∀x (P(x) ∨ ¬(P(x))). 

• ∀x (P(x, x)).
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A Simple Proof

Assume the following three axioms:

[1] ∀x (P(x) ∧ Q(x) → R(x)).
[2] P(X1).
[3] Q(X1). 

We prove R(X1) as follows:

[4] P(X1) ∧ Q(X1) → R(X1). (Universal instantiation, [1].)
[5] P(X1) ∧ Q(X1). (And introduction, [2], [3].)
[6] R(X1). (Modus ponens, [5], [4].)

Q6

Definition of a  Theory
• A first-order theory is a set of axioms and the set of all 

theorems that can be proved, using a set of sound and 
complete inference rules, from those axioms. 

• A theory is logically complete iff, for every sentence P 
in the language of the theory, either P or ¬P is a 
theorem. 

• A theory is consistent iff there is no sentence P such 
that both P and ¬ P are theorems. 

– If there is such a sentence, then the theory contains a 
contradiction and is inconsistent.

• Let w be an interpretation of a theory.  The theory is 
sound with respect to w if every theorem in the theory 
corresponds to a statement that is true in w.
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Subset-of

Subset-of is a 

partial order 

(reflexive, 

antisymmetric, 

transitive)

Total Orders

A total order R ⊆ A × A is a partial 

order that has the additional property 

that:

∀x, y ∈ A ((x, y) ∈ R ∨ (y, x) ∈ R). 

Example:  ≤ on the rational numbers

If R is a total order defined on a set A, 

then the pair (A, R) is a totally 

ordered set.  

6

5

4

3

Q7-8
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Infinite Descending Chain

• A partially ordered set (S, <) has an infinite 
descending chain if there is an infinite set 
of elements x0, x1, x2, … ∈S such that 
∀i∈ℕ(xi+1< xi)

• Example: 
In the rational numbers with <,

1/2 > 1/3 > 1/4 > 1/5 > 1/6 > …
is an infinite descending chain

Well-Founded and Well-Ordered Sets

Given a partially ordered set (A, R), an infinite 
descending chain is a totally ordered, with respect to R, 

subset B of A that has no minimal element.  

If (A, R) contains no infinite descending chains then it is 

called a well-founded set.   

•Used for halting proofs.

If (A, R) is a well-founded set and R is a total order, then 

(A, R) is called a well-ordered set.  

•Used in induction proofs.

•The positive integers are well-ordered

•The positive rational numbers are not well-ordered   

(with respect to normal <) Q8
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Mathematical Induction

1. A clear statement of the assertion P.

2. A proof that that P holds for some base case b, the 

smallest value with which we are concerned. 

3. A proof that, for all integers n ≥ b, if P(n) then it is 

also true that P(n+1).  We’ll call the claim P(n) the 

induction hypothesis. 

Because the integers ≥ b are well-ordered:

The principle of mathematical induction:

If: P(b) is true for some integer base case b, and

For all integers n ≥ b, P(n) → P(n+1)

Then: For all integers n ≥ b, P(n)

An induction proof has three parts:

Sum of First n Positive Odd Integers

The sum of the first n odd positive integers is n2.  We 

first check for plausibility: 

(n = 1) 1                   =  1  = 12.

(n = 2) 1 + 3             =  4  = 22.

(n = 3) 1 + 3 + 5       =  9  = 32.

(n = 4) 1 + 3 + 5 + 7 = 16 = 42, and so forth.

The claim appears to be true, so we should prove it.  
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Sum of First n Positive Odd  Integers

Let Oddi = 2(i – 1) + 1 denote the ith odd positive integer.  Then we 
can rewrite the claim as:
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The proof of the claim is by induction on n:
Base case: take 1 as the base case.  1 = 12.
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= n2+ Oddn+1.        (Induction hypothesis.)
= n2 + 2n + 1.            (Oddn+1 = 2(n+1–1) + 1 = 2n + 1.)
= (n + 1)2. 

Note that we start with one side of the equation we are trying to prove, 
and transform to get the other side.  We do not treat it like solving an 
equation, where we transform both sides in the same way.

For reference; 
we will not do 
this in class

Strong induction

• To prove that predicate P(n) is true for all 
n≥b:

– Show that P(b) is true [and perhaps P(b+1) *] 

– Show that for all j>b, if P(k) is true for all k with 

b≤ k<j, then P(j) is true. In symbols:

∀j >b ((∀k (b≤k<j → P(k)) → P(j))

* We may have to show it directly for more than 

one or two values, but there should always be 
a finite number of base cases.
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Fibonacci Running Time

• From Weiss, Data Structures and Problem Solving with 
Java, Section 7.3.4

• Consider this function to recursively calculate Fibonacci 
numbers:  
F0=0        F1=1          Fn = Fn-1+Fn-2 if n≥2.
– def fib(n):

if n <= 1:
return n

return fib(n-1) + fib(n-2)

• Let CN be the number of calls to fib during the 
computation of fib(N).

• It’s easy to see that C0=C1=1 , 
and if N ≥ 2, CN = CN-1 + CN-2 + 1.

• Prove that for N ≥ 3, CN = FN+2 + FN-1 -1.

Q10


