

Logic: Propositional and first-order

From Rich, Appendix A
Most of this material also appears in Grimaldi's Discrete Math book, Chapter 2

Boolean (Propositional) Logic Wffs

A wff (well-formed formula) is any string that is formed according to the following rules:

1. A propositional symbol (variable or constant) is a wff.
2. If P is a wff, then $\neg P$ is a wff.
3. If P and Q are wffs, then so are:
$P \vee Q, P \wedge Q, P \rightarrow Q, P \leftrightarrow Q$, and (P).

\boldsymbol{P}	\boldsymbol{Q}	$\neg \boldsymbol{P}$	$\boldsymbol{P} \vee \boldsymbol{Q}$	$\boldsymbol{P} \wedge \boldsymbol{Q}$	$\boldsymbol{P} \rightarrow \boldsymbol{Q}$	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$
True	True	False	True	True	True	True
True	False	False	True	False	False	False
False	True	True	True	False	True	False
False	False	True	False	False	True	True

Entailment

A set S of wffs logically implies or entails a conclusion Q iff, whenever all of the wffs in S are true, Q is also true.

Example:

$$
\{A \wedge B \wedge C, D\} \quad \text { entails } \quad A \rightarrow D
$$

Inference Rules

- An inference rule is sound iff, whenever it is applied to a set A of axioms, any conclusion that it produces is entailed by A.
- An entire proof is sound iff it consists of a sequence of inference steps each of which was constructed using a sound inference rule.
- A set of inference rules R is complete iff, given any set A of axioms, all statements that are entailed by A can be proved by applying the rules in R.

Some Sound Inference Rules

> - Modus ponens: \quad From $(P \rightarrow Q)$ and P, conclude Q.
> From $(P \rightarrow Q)$ and $\neg Q$, conclude $\neg P$.

- Or introduction: From P, conclude $(P \vee Q)$.
- And introduction: From P and Q, conclude
$(P \wedge Q)$.
- And elimination: From $(P \wedge Q)$, conclude P or conclude Q.
- Syllogism: From $(P \rightarrow Q)$ and $(Q \rightarrow R)$, conclude $(P \rightarrow R)$.

Additional Sound Inference Rules

- Quantifier exchange:
- From $\neg \exists x(P)$, conclude $\forall x(\neg P)$.
- From $\forall x(\neg P)$, conclude $\neg \exists x(P)$.
- From $\neg \forall x(P)$, conclude $\exists x(\neg P)$.
- From $\exists x(\neg P)$, conclude $\neg \forall x(P)$.
- Universal instantiation: For any constant C, from $\forall x(P(x))$, conclude $P(C)$.
- Existential generalization: For any constant C, from $P(C)$ conclude $\exists x(P(x))$.

First-Order Logic

A term is a variable, constant, or function application.
A well-formed formula (wff) in first-order logic is an expression that can be formed by:

- If P is an n-ary predicate and each of the expressions $x_{1}, x_{2}, \ldots, x_{n}$ is a term, then an expression of the form $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a wff. If any variable occurs in such a wff, then that variable occurs free in $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- If P is a wff, then $\neg P$ is a wff.
- If P and Q are wffs, then so are $P \vee Q, P \wedge Q, P \rightarrow Q$, and $P \leftrightarrow Q$.
- If P is a wff, then (P) is a wff.
- If P is a wff, then $\forall x(P)$ and $\exists x(P)$ are wffs. Any free instance of x in P is bound by the quantifier and is then no longer free.

Sentences

A wff with no free variables is called a sentence or a statement.

1. Bear(Smokey).
2. $\forall x(\operatorname{Bear}(x) \rightarrow \operatorname{Animal}(x))$.
3. $\forall x(\operatorname{Animal}(x) \rightarrow \operatorname{Bear}(x))$.
4. $\forall x(\operatorname{Animal}(x) \rightarrow \exists y(\operatorname{Mother-of}(y, x)))$.
5. $\forall x((\operatorname{Animal}(x) \wedge \neg \operatorname{Dead}(x)) \rightarrow \operatorname{Alive}(x))$.

Which of these sentences are true in the everyday world?

A ground instance is a sentence that contains no variables, such as \#1

Interpretations and Models

- An interpretation for a sentence w is a pair (D, I), where D is a universe of objects. I assigns meaning to the symbols of w : it assigns values, drawn from D, to the constants in w and it assigns functions and predicates (whose domains and ranges are subsets of D) to the function and predicate symbols of w.
- A model of a sentence w is an interpretation that makes w true. For example, let w be the sentence:

$$
\forall x(\exists y(y<x)) .
$$

- A sentence w is valid iff it is true in all interpretations.
- A sentence w is satisfiable iff there exists some interpretation in which w is true.
- A sentence w is unsatisfiable iff $\neg w$ is valid.

Examples

- $\forall x((P(x) \wedge Q($ Smokey $)) \rightarrow P(x))$.
$\neg(\forall x(P(x) \vee \neg(P(x)))$.
- $\forall x(P(x, x))$.

A Simple Proof

Assume the following three axioms:
[1] $\quad \forall x(P(x) \wedge Q(x) \rightarrow R(x))$.
[2] $\quad P\left(X_{1}\right)$.
[3] $\quad Q\left(X_{1}\right)$.

We prove $R\left(X_{1}\right)$ as follows:
[4] $\quad P\left(X_{1}\right) \wedge Q\left(X_{1}\right) \rightarrow R\left(X_{1}\right) . \quad$ (Universal instantiation, [1].)
[5] $\quad P\left(X_{1}\right) \wedge Q\left(X_{1}\right)$.
(And introduction, [2], [3].)
(Modus ponens, [5], [4].)

Definition of a Theory

- A first-order theory is a set of axioms and the set of all theorems that can be proved, using a set of sound and complete inference rules, from those axioms.
- A theory is logically complete iff, for every sentence P in the language of the theory, either P or $\neg \mathrm{P}$ is a theorem.
- A theory is consistent iff there is no sentence P such that both P and $\neg \mathrm{P}$ are theorems.
- If there is such a sentence, then the theory contains a contradiction and is inconsistent.
- Let w be an interpretation of a theory. The theory is sound with respect to w if every theorem in the theory corresponds to a statement that is true in w.

Total Orders

A total order $R \subseteq A \times A$ is a partial order that has the additional property that:
$\forall x, y \in A((x, y) \in R \vee(y, x) \in R)$.

Example: \leq on the rational numbers

If R is a total order defined on a set A, then the pair (A, R) is a totally ordered set.

Infinite Descending Chain

- A partially ordered set ($\mathrm{S},<$) has an infinite descending chain if there is an infinite set of elements $x_{0}, x_{1}, x_{2}, \ldots \in S$ such that $\forall i \in \mathbb{N}\left(\mathrm{x}_{\mathrm{i}+1}<\mathrm{x}_{\mathrm{i}}\right)$
- Example:

In the rational numbers with $<$, $1 / 2>1 / 3>1 / 4>1 / 5>1 / 6>\ldots$ is an infinite descending chain

Well-Founded and Well-Ordered Sets

Given a partially ordered set (A, R), an infinite
descending chain is a totally ordered, with respect to R, subset B of A that has no minimal element.

If (A, R) contains no infinite descending chains then it is called a well-founded set.
-Used for halting proofs.
If (A, R) is a well-founded set and R is a total order, then (A, R) is called a well-ordered set.

- Used in induction proofs.
-The positive integers are well-ordered
-The positive rational numbers are not well-ordered (with respect to normal <)

Mathematical Induction

Because the integers $\geq b$ are well-ordered:
The principle of mathematical induction:
If: $\quad P(b)$ is true for some integer base case b, and
For all integers $n \geq b, P(n) \rightarrow P(n+1)$
Then: For all integers $n \geq b, P(n)$
An induction proof has three parts:

1. A clear statement of the assertion P.
2. A proof that that P holds for some base case b, the smallest value with which we are concerned.
3. A proof that, for all integers $n \geq b$, if $P(n)$ then it is also true that $P(n+1)$. We'll call the claim $P(n)$ the induction hypothesis.

Sum of First \boldsymbol{n} Positive Odd Integers

The sum of the first n odd positive integers is n^{2}. We first check for plausibility:

$$
\begin{array}{ll}
(n=1) 1 & =1=1^{2} \\
(n=2) 1+3 & =4=2^{2} \\
(n=3) 1+3+5 & =9=3^{2} . \\
(n=4) 1+3+5+7 & =16=4^{2}, \text { and so forth. }
\end{array}
$$

The claim appears to be true, so we should prove it.

Sum of First \boldsymbol{n} Positive Odd Integers

Let $O d d_{i}=2(i-1)+1$ denote the $i^{\text {th }}$ odd positive integer. Then we can rewrite the claim as:

$$
\forall n \geq 1 \quad\left(\sum_{i=1}^{n} \text { Odd }_{i}=n^{2}\right)
$$

The proof of the claim is by induction on n :

For reference; we will not do this in class

Base case: take 1 as the base case. $1=1^{2}$.
Prove: $\quad \forall n \geq 1\left(\left(\sum_{i=1}^{n} O_{i} d_{i}=n^{2}\right) \rightarrow\left(\sum_{i=1}^{n+1} O d d_{i}=(n+1)^{2}\right)\right)$

$$
\begin{aligned}
\sum_{i=1}^{n+1} \text { Odd }_{i} & =\sum_{i=1}^{n} \text { Odd }_{i}+\text { Odd }_{n+1} & & \\
& =n^{2}+O d d_{n+1} . & & \text { (Induction hypothesis.) } \\
& =n^{2}+2 n+1 . & & \text { (Odd } \left.{ }_{n+1}=2(n+1-1)+1=2 n+1 .\right) \\
& =(n+1)^{2} . & &
\end{aligned}
$$

Note that we start with one side of the equation we are trying to prove, and transform to get the other side. We do not treat it like solving an equation, where we transform both sides in the same way.

Strong induction

- To prove that predicate $P(n)$ is true for all

 $\mathrm{n} \geq \mathrm{b}$:- Show that $P(b)$ is true [and perhaps $P(b+1)^{*}$]
- Show that for all $j>b$, if $P(k)$ is true for all k with $b \leq k<j$, then $P(j)$ is true. In symbols:
$\forall j>\mathrm{b}((\forall k(\mathrm{~b} \leq \mathrm{k}<\mathrm{j} \rightarrow \mathrm{P}(\mathrm{k})) \rightarrow \mathrm{P}(\mathrm{j}))$

[^0]
Fibonacci Running Time

From Weiss, Data Structures and Problem Solving with Java, Section 7.3.4
Consider this function to recursively calculate Fibonacci numbers:
$F_{0}=0 \quad F_{1}=1 \quad F_{n}=F_{n-1}+F_{n-2}$ if $n \geq 2$.

- def fib(n):
if $\mathrm{n}<=1$:
return n
return fib(n-1) + fib(n-2)
Let C_{N} be the number of calls to fib during the computation of fib(N).
It's easy to see that $\mathrm{C}_{0}=\mathrm{C}_{1}=1$,
and if $\mathrm{N} \geq 2, \mathrm{C}_{\mathrm{N}}=\mathrm{C}_{\mathrm{N}-1}+\mathrm{C}_{\mathrm{N}-2}+1$.
Prove that for $\mathrm{N} \geq 3, \mathrm{C}_{\mathrm{N}}=\mathrm{F}_{\mathrm{N}+2}+\mathrm{F}_{\mathrm{N}-1}-1$.

[^0]: * We may have to show it directly for more than one or two values, but there should always be a finite number of base cases.

