

Questions?

- Syllabus

- Yesterday's discussion

Reading Assignment

I often put more in the slides and quizzes than I think we'll get through before the end of class...
... just in case things go faster than I expect.
... as a preview of things to come.

Leftovers from Day 1

The big question:

Given a language description, which strings are in the language?

Example Language Definitions

$$
\begin{aligned}
L=\{ & \left.x \in\{a, b\}^{*}: \text { all a's precede all b's }\right\} \\
& \varepsilon, \text { a, aa, aabbb, and bb are in } L . \\
& \text { aba, ba, and abc are not in } L .
\end{aligned}
$$

$L=\left\{x: \exists y \in\{a, b\}^{*}: x=y a\right\}$
Simple English description?
$L=\left\{a^{n}: n \geq 0\right\}$
This definition uses replication
$L=\varnothing=\{ \}$
Note that the last two
are different
$L=\{\varepsilon\}$
languages

The Perils of English descriptions

$L=\left\{x \# y: x, y \in\{0,1,2,3,4,5,6,7,8,9\}^{*}\right.$ and, when x and y are viewed as the decimal representations of natural numbers, square $(x)=y\}$.

In L: 3\#9 12\#144

Not in L: 3 \# 12 12\#12\#12
In L?
\#

Natural Languages are Tricky

$L=\{w: w$ is a sentence in English $\}$.

Examples:

Kerry hit the ball.
Colorless green ideas sleep furiously.

The window needs fixed.
Ball the Stacy hit blue.

A Halting Problem Language

$L=\{w: w$ is a C program that always halts, no matter what input it is given\}.

- Well-specified.
- But can we decide which strings L contains?

Languages and Prefixes

What are the following languages:
$L=\left\{w \in\{a, b\}^{*}:\right.$ no prefix of w contains $\left.b\right\}$
$L=\left\{w \in\{a, b\}^{*}:\right.$ no prefix of w starts with $\left.a\right\}$
$L=\left\{w \in\{a, b\}^{*}\right.$: every prefix of w starts with $\left.a\right\}$

Sets and Relations

Defining a (possibly infinite)Set

- Write a program that enumerates the elements of S.
- Write a program that decides S by implementing the characteristic function of S. Such a program returns True if run on an element that is in S and False if run on an element that is not in S.

Cardinality

The cardinality of every set we will consider is:
5 - a natural number (if S is finite),

- "countably infinite" (if S has the same number of elements as there are integers), or
- "uncountably infinite" (if S has more elements than there are integers).

Sets of Sets

- The power set of A is the set of all subsets of A.

Let $A=\{1,2,3\}$. Then:

$$
\mathscr{P}(A)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} .
$$

- $\Pi \subseteq \mathrm{P}(A)$ is a partition of a set A iff:
- no element of Π is empty,
- all pairs of elements of Π are disjoint, and
- the union of all the elements of Π equals A.

Partitions of A :

$$
\{\{1\},\{2,3\}\} \text { or }\{\{1,3\},\{2\}\} \text { or }\{\{1,2,3\}\} \text {. }
$$

Closure

- A set S is closed under binary operation op iff
$\forall x, y \in S(x$ op $y \in S)$
\mathbb{N} is closed under addition and multiplication but not subtraction or division.
- The set of finite sets is closed under union and intersection.

Equivalence Relations

A relation $R \subseteq A \times A$ is an equivalence relation iff it is:
-reflexive,
-symmetric, and
-transitive.

Examples:
-Equality
-Lives-at-Same-Address-As
-Same-Length-As

Concatenation of Languages

If L_{1} and L_{2} are languages over Σ :

$$
L_{1} L_{2}=\left\{w \in \Sigma^{*}: \exists s \in L_{1}\left(\exists t \in L_{2}(w=s t)\right)\right\}
$$

Examples:
$L_{1}=\{c a t, \operatorname{dog}\}$
$L_{2}=\{$ apple, pear $\}$
$L_{1} L_{2}=\{$ catapple, catpear, dogapple, dogpear\}
$L_{1}=a^{*}$
$L_{2}=b^{*}$
$L_{1} L_{2}=$

Concatenation of Languages

$\{\varepsilon\}$ is the identity for concatenation:

$$
L\{\varepsilon\}=\{\varepsilon\} L=L
$$

\varnothing is a zero for concatenation:
$L \varnothing=\varnothing L=\varnothing$
$L_{1}=\left\{a^{n}: n \geq 0\right\}$
$L_{2}=\left\{b^{n}: n \geq 0\right\}$
$L_{1} L_{2}=\left\{\mathrm{a}^{n} \mathrm{~b}^{m}: n, m \geq 0\right\}$
$L_{1} L_{2} \neq\left\{a^{n} b^{n}: n \geq 0\right\}$

Kleene Star

$$
\begin{aligned}
L^{*}= & \{\varepsilon\} \cup \\
& \left\{w \in \Sigma^{*}: \exists k \geq 1\right. \\
& \left.\left(\exists w_{1}, w_{2}, \ldots w_{\mathrm{k}} \in L\left(w=w_{1} w_{2} \ldots w_{\mathrm{k}}\right)\right)\right\}
\end{aligned}
$$

Example:
$L=\{$ dog, cat, fish $\}$
$L^{*}=\{\varepsilon$, dog, cat, fish, dogdog, dogcat, fishcatfish, fishdogdogfishcat, ...\}

The ${ }^{+}$Operator

$L^{+}=L L^{*}$
$L^{+}=L^{*}-\{\varepsilon\} \quad$ iff $\varepsilon \notin L$
L^{+}is the closure of L under concatenation.

Concatenation and Reverse of Languages

Theorem: $\left(L_{1} L_{2}\right)^{R}=L_{2}{ }^{R} L_{1}{ }^{R}$.
Proof:
$\forall x\left(\forall y\left((x y)^{R}=y^{R} x^{R}\right)\right)$
Theorem 2.1
$\left(L_{1} L_{2}\right)^{R}=\left\{(x y)^{R}: x \in L_{1}\right.$ and $\left.y \in L_{2}\right\} \quad$ Definition of concatenation of languages
$=\left\{y^{R} x^{R}: x \in L_{1}\right.$ and $\left.y \in L_{2}\right\} \quad$ Lines 1 and 2
$=L_{2}{ }^{R} L_{1}{ }^{R}$ Definition of concatenation of languages

Determining Language Membership

Computational approach:

- Generator (enumerator)

When it is asked, it gives us the next element of the language.
Any given element of the language will appear within a finite amount of time.

- Recognizer

Given a string s, recognizer accepts s if it is in the language.
If not, it either rejects s or keeps running forever.

[^0]
Review: How Large is a Language?

The smallest language over any Σ is \varnothing, with cardinality 0 .
The largest is Σ^{*}. How big is it?
Theorem: If $\Sigma \neq \varnothing$ then Σ^{*} is countably infinite.
Proof: The elements of Σ^{*} can be lexicographically enumerated by the following procedure:

- Enumerate all strings of length 0 , then length 1 , then length 2, and so forth.
- Within the strings of a given length, enumerate them in dictionary order.

This enumeration is infinite since there is no longest string in Σ^{*}. Since there exists an infinite enumeration of Σ^{\star}, it is countably infinite.

How Many Languages Are There?

Theorem: If $\Sigma \neq \varnothing$ then the set of languages over Σ is uncountably infinite.

Proof: The set of languages defined on Σ is $\mathscr{T}\left(\Sigma^{*}\right)$. Σ^{*} is countably infinite. If S is a countably infinite set, $\mathscr{P}(S)$ is uncountably infinite. So $\mathscr{G}\left(\Sigma^{*}\right)$ is uncountably infinite.

From Rich, Appendix A
Most of this material also appears in Grimaldi's Discrete Math book, Chapter 2

Boolean (Propositional) Logic Wffs

A wff (well-formed formula) is any string that is formed according to the following rules:

1. A propositional symbol (variable or constant) is a wff.
2. If P is a wff, then $\neg P$ is a wff.
3. If P and Q are wffs, then so are:

$$
P \vee Q, P \wedge Q, P \rightarrow Q, P \leftrightarrow Q, \text { and (P). }
$$

\boldsymbol{P}	\boldsymbol{Q}	$\neg \boldsymbol{P}$	$\boldsymbol{P} \vee \boldsymbol{Q}$	$\boldsymbol{P} \wedge \boldsymbol{Q}$	$\boldsymbol{P} \rightarrow \mathbf{Q}$	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$
True	True	False	True	True	True	True
True	False	False	True	False	False	False
False	True	True	True	False	True	False
False	False	True	False	False	True	True

When Wffs are True

- A wff is valid or is a tautology iff it is true for all assignments of truth values to the variables it contains.
- A wff is satisfiable iff it is true for at least one assignment of truth values to the variables it contains.
- A wff is unsatisfiable iff it is false for all assignments of truth values to the variables it contains.
- Two wffs P and Q are equivalent, written $P \equiv Q$, iff they have the same truth values for every assignment of truth values to the variables they contain.
$P \vee \neg P$ is a tautology:

\boldsymbol{P}	$\neg \boldsymbol{P}$	$\boldsymbol{P} \vee \neg \boldsymbol{P}$
True	False	True
False	True	True

Entailment

A set S of wffs logically implies or entails a conclusion Q iff, whenever all of the wffs in S are true, Q is also true.

Example:
$\{A \wedge B \wedge C, D\}$
entails
$A \rightarrow D$

Inference Rules

- An inference rule is sound iff, whenever it is applied to a set A of axioms, any conclusion that it produces is entailed by A.
- An entire proof is sound iff it consists of a sequence of inference steps each of which was constructed using a sound inference rule.
- A set of inference rules R is complete iff, given any set A of axioms, all statements that are entailed by A can be proved by applying the rules in R.

Some Sound Inference Rules

- Modus ponens: \quad From $(P \rightarrow Q)$ and P, conclude Q.
- Modus tollens: From $(P \rightarrow Q)$ and $\neg Q$, conclude $\neg P$.
- Or introduction: From P, conclude $(P \vee Q)$.
- And introduction: From P and Q, conclude $(P \wedge Q)$.
- And elimination: From $(P \wedge Q)$, conclude P or conclude Q.
- Syllogism: From $(P \rightarrow Q)$ and $(Q \rightarrow R)$, conclude $(P \rightarrow R)$.

Additional Sound Inference Rules

- Quantifier exchange:
- From $\neg \exists x(P)$, conclude $\forall x(\neg P)$.
- From $\forall x(\neg P)$, conclude $\neg \exists x(P)$.
- From $\neg \forall x(P)$, conclude $\exists x(\neg P)$.
- From $\exists x(\neg P)$, conclude $\neg \forall x(P)$.
- Universal instantiation: For any constant C, from $\forall x(P(x))$, conclude $P(C)$.
- Existential generalization: For any constant C, from $P(C)$ conclude $\exists x(P(x))$.

First-Order Logic

A term is a variable, constant, or function application.
A well-formed formula (wff) in first-order logic is an expression that can be formed by:

- If P is an n-ary predicate and each of the expressions $x_{1}, x_{2}, \ldots, x_{n}$ is a term, then an expression of the form $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a wff. If any variable occurs in such a wff, then that variable occurs free in $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- If P is a wff, then $\neg P$ is a wff.
- If P and Q are wffs, then so are $P \vee Q, P \wedge Q, P \rightarrow Q$, and $P \leftrightarrow Q$.
- If P is a wff, then (P) is a wff.
- If P is a wff, then $\forall x(P)$ and $\exists x(P)$ are wffs. Any free instance of x in P is bound by the quantifier and is then no longer free.

Sentences

A wff with no free variables is called a sentence or a statement.

1. Bear(Smokey).
2. $\forall x(\operatorname{Bear}(x) \rightarrow \operatorname{Animal}(x))$.
3. $\forall x(\operatorname{Animal}(x) \rightarrow \operatorname{Bear}(x))$.
4. $\forall x(\operatorname{Animal}(x) \rightarrow \exists y(\operatorname{Mother-of}(y, x)))$.
5. $\forall x((\operatorname{Animal}(x) \wedge \neg \operatorname{Dead}(x)) \rightarrow \operatorname{Alive}(x))$.

Which of these sentences are true in the everyday world?
A ground instance is a sentence that contains no variables, such as \#1

- Interpretations and Models

- An interpretation for a sentence w is a pair ($D, 1$), where D is a universe of objects. I assigns meaning to the symbols of w : it assigns values, drawn from D, to the constants in w and it assigns functions and predicates (whose domains and ranges are subsets of D) to the function and predicate symbols of w.
- A model of a sentence w is an interpretation that makes w true. For example, let w be the sentence:

$$
\forall x(\exists y(y<x)) .
$$

- A sentence w is valid iff it is true in all interpretations.
- A sentence w is satisfiable iff there exists some interpretation in which w is true.
- A sentence w is unsatisfiable iff $\neg w$ is valid.

Examples

- $\forall x((P(x) \wedge Q($ Smokey $)) \rightarrow P(x))$.
- $\neg(\forall x(P(x) \vee \neg(P(x)))$.
- $\forall x(P(x, x))$.

A Simple Proof

Assume the following three axioms:
[1] $\quad \forall x(P(x) \wedge Q(x) \rightarrow R(x))$.
[2] $\quad P\left(X_{1}\right)$.
[3] $\quad Q\left(X_{1}\right)$.

We prove $R\left(X_{1}\right)$ as follows:
[4] $\quad P\left(X_{1}\right) \wedge Q\left(X_{1}\right) \rightarrow R\left(X_{1}\right) . \quad$ (Universal instantiation, [1].)
[5] $\quad P\left(X_{1}\right) \wedge Q\left(X_{1}\right)$.
(And introduction, [2], [3].)
[6] $\quad R\left(X_{1}\right)$.
(Modus ponens, [5], [4].)

Definition of a Theory

- A first-order theory is a set of axioms and the set of all theorems that can be proved, using a set of sound and complete inference rules, from those axioms.
- A theory is logically complete iff, for every sentence P in the language of the theory, either P or $\neg \mathrm{P}$ is a theorem.
- A theory is consistent iff there is no sentence P such that both P and $\neg \mathrm{P}$ are theorems.
- If there is such a sentence, then the theory contains a contradiction and is inconsistent.
- Let w be an interpretation of a theory. The theory is sound with respect to w if every theorem in the theory corresponds to a statement that is true in w .

[^0]: 昜时

 ## Enumeration

 Enumeration:

 - Arbitrary order
 - More useful: lexicographic order
 - Shortest first
 - Within a length, dictionary order

 The lexicographic enumeration of:

 - $\left\{w \in\{a, b\}^{*}:|w|\right.$ is even $\}$:

