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Theory of Computation
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Questions?

; 3 Syllabus
. Yesterday's discussion

' i+ Reading Assignment

| often put more in the slides and quizzes than | think we'll get
through before the end of class...

... justin case things go faster than | expect.

... as a preview of things to come.
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Leftovers from Day 1

The big question:
Given a language description, which
strings are in the language?

Example Language Definitions

L ={xe {a, b}*:all a’s precede all b’s}
€, a, aa, aabbb, and bb are in L.
aba, ba, and abc are notin L.

L={x:3ye {a,b}*: x=ya}
Simple English description?

L={a":n>0}
This definition uses replication

L= ={} Note that the last two
are different

L = {€} languages
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The Perils of English descriptions

L={x#y:x,ye {0,1,2,3,4,5,6,7,8, 9} and, when x
and y are viewed as the decimal representations of
natural numbers, square(x) = y}.

InL: 3#9 124144
Not in L: 3#8 12 12#12#12
InL? #
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Natural Languages are Tricky

L = {w: wis a sentence in English}.
Examples:
Kerry hit the ball.
Colorless green ideas sleep furiously.
The window needs fixed.

Ball the Stacy hit blue.
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A Halting Problem Language

L ={w: wis a C program that always halts, no matter
what input it is given}.

» Well-specified.

* But can we decide which strings L contains?
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Languages and Prefixes

What are the following languages:

L ={we {a, b}*: no prefix of w contains b}

L ={we {a, b}*: no prefix of w starts with a}

L ={we {a, b}": every prefix of w starts with a}
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Sets and Relations
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Defining a (possibly infinite)Set

3 :3 » Write a program that enumerates the elements of S.
i{

-F » Write a program that decides S by implementing the

-
o = characteristic function of S. Such a program
¥ returns True if run on an element that is in S and
False if run on an element that is not in S.
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Cardinality

The cardinality of every set we will consider is:

;; - a natural number (if Sis finite),
E

-,
e

H & - “countably infinite” (if S has the same number of

elements as there are integers), or

» “uncountably infinite” (if S has more elements than
there are integers).

Sets of Sets
5 . The power set of A is the set of all subsets of A.
Let A={1,2,3}. Then:
(A) = {2, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

'l < II1c P(A)is a partition of a set A iff:

* no element of IT is empty,
« all pairs of elements of IT are disjoint , and
* the union of all the elements of IT equals A.

Partitions of A:

{11 {2, 3}} or {{1,3},{2}} or {{1,2,3}}.
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Closure

: % Aset S is closed under binary operation

5 opiff

Vx,yeS(xopye S)

. B Nis closed under addition and

= & multiplication but not subtraction or
division.

' E* The set of finite sets is closed under union
and intersection.

Equivalence Relations

Arelation Rc Ax Ais an equivalence relation iff it is:
reflexive,
ssymmetric, and

stransitive.

Examples:
*Equality
*Lives-at-Same-Address-As

*Same-Length-As

Q3,4
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Operations on Languages
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Concatenation of Languages
If L, and L, are languages over X:
LiL,={we X*:3dse L, (Ite L, (w= st))}
Examples:
= {cat, dog}
={apple, pear}
1 L, ={catapple, catpear, dogapple,

dogpear}

L =a* L,=b*
L
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Concatenation of Languages

{e} is the identity for concatenation:
L{e} ={e}L=L

& is a zero for concatenation:
L= L=

LL, #{a™": n>0}

Q5a
e
Kleene Star
2 L ={gu
B {(we ¥ :3k>1
=3
N B (Awy, Wy, ... W e L (W=w, W, ... W)}
Example:
e L ={dog, cat, fish}
I"f-,j g L* = {e, dog, cat, fish, dogdog,
il dogcat, fishcatfish,
‘ fishdogdogfishcat, ...}
Q5b
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The * Operator
L+=LL*
Lr=L*-{e} iff eelL

L+ is the closure of L under concatenation.

¥ P
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Concatenation and Reverse of
Languages

Theorem: (L, L,)? = LA LR

Proof:
Vx (Vy ((xy)R = yAxR)) Theorem 2.1

(L, L)R ={(xy)R:xe Lyand ye L,} Definition of
concatenation of languages

{y’x?:xe Lyand y e L)} Lines 1 and 2

LRLR Definition of
concatenation of languages
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Determining Language Membership

Computational approach:

* Generator (enumerator)
When it is asked, it gives us the next
element of the language.
Any given element of the language will
appear within a finite amount of time.

» Recognizer
Given a string s, recognizer accepts
s ifitisin the language.
If not, it either rejects s or keeps
running forever.

Enumeration
Enumeration:
* Arbitrary order
» More useful: lexicographic order
* Shortest first
» Within a length, dictionary order

The lexicographic enumeration of:

{we {a, b}* : || is even} :

11/29/2011
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Review: How Large is a Language?

The smallest language over any ¥ is &, with cardinality 0.
The largest is £*. How big is it?

Theorem: If ¥ # & then £* is countably infinite.

Proof: The elements of X* can be lexicographically
enumerated by the following procedure:
» Enumerate all strings of length 0, then length 1,

then length 2, and so forth.
» Within the strings of a given length, enumerate

them in dictionary order.

This enumeration is infinite since there is no longest
string in £*. Since there exists an infinite enumeration of
¥*, itis countably infinite.

How Many Languages Are There?

Theorem: If ¥ # & then the set of languages over ¥ is
uncountably infinite.

Proof: The set of languages defined on X is $(X*). L*is
countably infinite. If Sis a countably infinite set, #(S) is
uncountably infinite. So $(X*) is uncountably infinite.

11/29/2011

12



Logic: Propositional and
first-order

From Rich, Appendix A

Most of this material also appears in Grimaldi's Discrete Math book,
Chapter 2

Boolean (Propositional) Logic Wffs

A wff (well-formed formula) is any string that is formed
according to the following rules:

1. A propositional symbol (variable or constant) is a wff.

2. If Pis a wff, then =P is a wiff.
3. If Pand Q are wffs, then so are:
PvQ PAQ P—Q Pe Q and (P).

P 0 -P |PvQ |PAQ P—>Q |PoQ
True True False True True True True
True False False True False False False
False True True True False True False
False False True False False True True

11/29/2011

13



AT

. I_‘-‘..—;.l :\‘-‘:\_;-.v“'" SRR SPEED
P T RS S SR

When Wiffs are True

A wif is valid or is a tautology iff it is true for all
assignments of truth values to the variables it contains.

A wif is satisfiableiff it is true for at least one
assignment of truth values to the variables it contains.

A wif is unsatisfiable iff it is false for all assignments
of truth values to the variables it contains.

Two wffs P and Q are equivalent, written P = Q, iff
they have the same truth values for every assignment
of truth values to the variables they contain.

Pv—Pis a tautology: | — v i
True |False True
False |True True Q6
& Entailment

. I_‘-‘..—;.l N TR R SPEED
AR TN IR G TERRY

A set S of wifs logically implies or entails a conclusion Q
iff, whenever all of the wffs in S are true, Q is also true.

Example:

{AABA C, D} entails A->D

11/29/2011
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Inference Rules

* An inference rule is sound iff, whenever it is
applied to a set A of axioms, any conclusion
that it produces is entailed by A.

An entire proof is sound iff it consists of a
sequence of inference steps each of which
was constructed using a sound inference rule.

A set of inference rules Ris complete iff,
given any set A of axioms, all statements that
are entailed by A can be proved by applying
the rules in R.

Q7

Some Sound Inference Rules

Modus ponens: From (P — Q) and P,
conclude Q.

Modus tollens: From (P — Q) and —Q,
conclude —P.

Or introduction: From P, conclude (P v Q).

And introduction: From P and Q, conclude
(PA Q).

And elimination:  From (P A Q), conclude P
or conclude Q.

Syllogism:  From (P— Q)and (Q— R),
conclude (P— R) . Q3

11/29/2011
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Additional Sound Inference Rules

* Quantifier exchange:
* From —3x (P), conclude Vx (—P).
* From Vx (—P), conclude —3x (P).
* From =V x (P), conclude 3x (—P).
» From 3x (—P), conclude =Vx (P) .

» Universal instantiation: For any constant C, from
Vx (P(x)), conclude P(C).

» Existential generalization: For any constant C,
from P(C) conclude 3x (P(x)).

First-Order Logic

Aterm is a variable, constant, or function application.
A well-formed formula (wff) in first-order logic is an
expression that can be formed by:

|« lfPisan n-ary predicate and each of the expressions

Xy, Xy ..., X, IS @ term, then an expression of the form
P(x, X, ..., X,) is a wif. If any variable occurs in such
a wff, then that variable occurs free in P(x;, X5, ... , X,) -

. If Pis awif, then —Pis a wif.

b « If Pand Q are wffs, thensoare Pv Q, PAQ, P— Q,

i and P Q.
| - If Pis a wff, then (P) is a wif.

« If Pis a wff, then Vx (P) and 3x (P) are wifs. Any free
instance of x in P is bound by the quantifier and is then
no longer free. Q8

11/29/2011
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Sentences

A wiff with no free variables is called a sentence or a
statement.

1.  Bear(Smokey).

Vx (Bear(x) — Animal(x)).

Vx (Animal(x) — Bear(x)).

Vx (Animal(x) — 3y (Mother-of(y, x))).
Vx ((Animal(x) A —mDead(x)) — Alive(x)).

oD

Which of these sentences are true in the everyday world?

A ground instance is a sentence that contains no
variables, such as #1

Q9
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Interpretations and Models

» An interpretation for a sentence wis a pair (D, /), where D
is a universe of objects. lassi?ns meaning to the symbols
of w: it assigns values, drawn from D, to the constants in w
and it assigns functions and predicates (whose domains
and ranges are subsets of D) to the function and predicate
symbols of w.

* A model of a sentence w is an interpretation that makes w
true. For example, let w be the sentence:
VX (3y (v < X)).

+ A sentence wis validiff it is true in all interpretations.

* A sentence wis satisfiable iff there exists some
interpretation in which w is true.

* A sentence wis unsatisfiable iff —w is valid.

Q10

11/29/2011

17



P

o :‘. A A
o ETPRPRF e

Examples

* VX ((P(x) A Q(Smokey)) — P(X)).

o (VX (P(X) v =(P(x))).

o VX (P(x, X)).

P
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A Simple Proof

Assume the following three axioms:
[1] Vx (P(X) A Q(x) = R(x)).

[2]  P(X).
[8] QX))

We prove R(X;) as follows:

[4] P(X;) A Q(X;) = R(X)). (Universal instantiation, [1].)

(5] P(X;) A Q(X7). (And introduction, [2], [3].)

[6] R(X;)- (Modus ponens, [5], [4].)
Q11-12
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Definition of a Theory

A first-order theory is a set of axioms and the set of all
theorems that can be proved, using a set of sound and
complete inference rules, from those axioms.

A theory is logically complete iff, for every sentence P
in the language of the theory, either P or =P is a
theorem.

A theory is consistent iff there is no sentence P such
that both P and — P are theorems.

— If there is such a sentence, then the theory contains a
contradiction and is inconsistent.

Let w be an interpretation of a theory. The theory is
sound with respect to w if every theorem in the theory
corresponds to a statement that is true in w.
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