

The + Operator $L^+ = L L^*$ $L^+ = L^* - \{\epsilon\}$ iff $\epsilon \notin L$ L^+ is the closure of L under concatenation.

Concatenation and Reverse of Languages

Theorem: $(L_1 \ L_2)^{R} = L_2^{R} \ L_1^{R}$.

Proof: $\forall x (\forall y ((xy)^{\mathsf{R}} = y^{\mathsf{R}}x^{\mathsf{R}}))$

Theorem 2.1

 $\begin{aligned} (L_1 \ L_2)^{\mathsf{R}} &= \{ (xy)^{\mathsf{R}} : x \in L_1 \text{ and } y \in L_2 \} & \text{Definition of} \\ & \text{concatenation of languages} \\ &= \{ y^{\mathsf{R}} x^{\mathsf{R}} : x \in L_1 \text{ and } y \in L_2 \} & \text{Lines 1 and 2} \\ &= L_2^{\mathsf{R}} \ L_1^{\mathsf{R}} & \text{Definition of} \\ & \text{concatenation of languages} \end{aligned}$

A wff (well-formed formula) is any string that is formed according to the following rules:								
 A propositional symbol (variable or constant) is a wff. If P is a wff, then ¬P is a wff. If P and Q are wffs, then so are: P ∨ Q, P ∧ Q, P → Q, P ↔ Q, and (P). 								
		1						
P	Q	$\neg P$	$P \lor Q$	$P \wedge Q$	$P \rightarrow Q$	$P \leftrightarrow Q$		
P True	Q True	¬₽ False	$\begin{array}{c} P \lor Q \\ \hline True \end{array}$	P ^ Q True	$P \rightarrow Q$ True	$\begin{array}{c} P \leftrightarrow Q \\ \hline True \end{array}$		
P True True	Q True False	¬₽ False False	P∨Q True True	P ^ Q True False	$\begin{array}{c} P \rightarrow Q \\ \\ True \\ \\ False \end{array}$	$\begin{array}{c} P \leftrightarrow Q \\ \hline \\ True \\ \hline \\ False \end{array}$		
P True True False	Q True False True	¬P False False True	$\begin{array}{c} P \lor Q \\ \hline True \\ \hline True \\ \hline True \\ \hline True \end{array}$	P ^ Q True False False	$P \rightarrow Q$ $True$ $False$ $True$	$P \leftrightarrow Q$ $True$ $False$ $False$		

ALL INS	Entailment						
1000 C	A set <i>S</i> of wffs <i>logically implies</i> or <i>entails</i> a conclusion <i>G</i> iff, whenever all of the wffs in <i>S</i> are true, <i>Q</i> is also true.						
	Example: $\{A \land B \land C D\}$ entails	$A \rightarrow D$					

Calding Part	Some Sound	Some Sound Inference Rules					
	Modus ponens:	From $(P \rightarrow Q)$ and P,					
		conclude <i>Q</i> .					
an an	 Modus tollens: 	From $(P \rightarrow Q)$ and $\neg Q$,					
		conclude <i>¬P</i> .					
	• Or introduction:	From P , conclude ($P \lor Q$).					
6	And introduction:	From <i>P</i> and <i>Q</i> , conclude					
		$(P \land Q).$					
	 And elimination: 	From $(P \land Q)$, conclude P					
		or conclude <i>Q</i> .					
	• Syllogism: From	n $(P \rightarrow Q)$ and $(Q \rightarrow R)$, conclude $(P \rightarrow R)$. Q3					

