
11/29/2011

1

MA/CSSE 474

Theory of Computation

Math Review
More on Languages

Questions?

• Syllabus

• Yesterday's discussion

• Reading Assignment

I often put more in the slides and quizzes than I think we'll get 
through before the end of class…

… just in case things go faster than I expect.
… as a preview of things to come.
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Leftovers from Day 1

The big question:
Given a language description, which 

strings are in the language?

L = {x ∈ {a, b}* : all a’s precede all b’s}
ε, a, aa, aabbb, and bb are in L.  
aba, ba, and abc are not in L.  

L = {x : ∃y ∈ {a, b}* : x = ya}

Simple English description?

This definition uses replication

L = Ø = { }

L = {ε}

L = {an : n ≥ 0}

Example Language Definitions

Note that the last two 
are different 
languages
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The Perils of English descriptions

L = {x#y: x, y ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}* and, when x 

and y are viewed as the decimal representations of 
natural numbers, square(x) = y}.

In L: 3#9 12#144

Not in L: 3#8 12 12#12#12   

In L?   #

Natural Languages are Tricky

L = {w: w is a sentence in English}.

Examples:

Kerry hit the ball.

Colorless green ideas sleep furiously.

The window needs fixed.

Ball the Stacy hit blue.
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A Halting Problem Language

L = {w: w is a C program that always halts,  no matter 
what input it is given}. 

• Well-specified.

• But can we decide which strings L contains?

Languages and Prefixes

What are the following languages:

L = {w ∈ {a, b}*: no prefix of w contains b}

L = {w ∈ {a, b}*: no prefix of w starts with a}

L = {w ∈ {a, b}*: every prefix of w starts with a}

Q1
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Sets and Relations

Defining a (possibly infinite)Set

• Write a program that enumerates the elements of S.   

• Write a program that decides S by implementing the 
characteristic function of S.  Such a program 
returns True if run on an element that is in S and 
False if run on an element that is not in S.

Q2
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Cardinality

• a natural number (if S is finite), 

• “countably infinite” (if S has the same number of 
elements as there are integers), or 

• “uncountably infinite” (if S has more elements than 
there are integers).

The cardinality of every set we will consider is:

Sets of Sets

• The power set of A is the set of all subsets of A. 

Let A = {1, 2, 3}.  Then: 

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

• Π ⊆ P(A) is a partition of a set A iff:

• no element of Π is empty,

• all pairs of elements of Π are disjoint , and

• the union of all the elements of Π equals A.

Partitions of A:

{{1}, {2, 3}}   or   {{1, 3}, {2}}   or   {{1, 2, 3}}.



11/29/2011

7

Closure

• A set S is closed under binary operation 
op iff
∀x,y∈S ( x op y ∈ S)

• ℕ is closed under addition and 
multiplication but not subtraction or 
division.

• The set of finite sets is closed under union 
and intersection.

Equivalence Relations

A relation R ⊆ A × A is an equivalence relation iff it is:

•reflexive, 

•symmetric, and 

•transitive.  

Examples:

•Equality

•Lives-at-Same-Address-As

•Same-Length-As

Q3, 4
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Operations on Languages

Concatenation of Languages

If L1 and L2 are languages over Σ:

L1L2 = {w ∈ Σ* : ∃s ∈ L1 (∃t ∈ L2 (w = st))}

Examples:

L1 = {cat, dog}           
L2 = {apple, pear}
L1 L2 ={catapple, catpear, dogapple, 

dogpear}

L1 = a*        L2 = b*

L1 L2 = 
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{ε} is the identity for concatenation:

L{ε} = {ε}L = L

∅ is a zero for concatenation:

L ∅ = ∅ L = ∅

L1 = {an:  n ≥ 0}       
L2 = {bn : n ≥ 0}

L1 L2 = {anbm : n, m ≥ 0}

L1L2 ≠ {anbn : n ≥ 0}

Concatenation of Languages

Q5a

Kleene Star

L* = {ε} ∪
{w ∈ Σ* : ∃k ≥ 1 

(∃w1, w2,  … wk ∈ L (w = w1 w2 … wk))}

Example:
L = {dog, cat, fish}
L* = {ε, dog, cat, fish, dogdog, 

dogcat, fishcatfish, 
fishdogdogfishcat, …}

Q5b
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The + Operator

L+ = L L*

L+ = L* - {ε}   iff ε ∉ L

L+ is the closure of L under concatenation.

Concatenation and Reverse of 
Languages

Theorem: (L1 L2)
R = L2

R L1
R.

Proof:
∀x (∀y ((xy)R = yRxR))  Theorem 2.1

(L1 L2)
R = {(xy)R : x ∈ L1 and y ∈ L2} Definition of 

concatenation of languages
= {yRxR : x ∈ L1 and y ∈ L2} Lines 1 and 2
= L2

R L1
R Definition of 

concatenation of languages
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Determining Language Membership

Computational approach:

• Generator (enumerator)

When it is asked, it gives us the next  
element of the language.  
Any given element of the language will 
appear within a finite amount of time.

• Recognizer

Given a string s, recognizer accepts
s if it is in the language.  
If not, it either rejects s or keeps 
running forever.

Enumeration

Enumeration:

• Arbitrary order

• More useful: lexicographic order

• Shortest first
• Within a length, dictionary order

The lexicographic enumeration of:

• {w ∈ {a, b}* : |w| is even} :
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Review: How Large is a Language?

The smallest language over any Σ is ∅, with cardinality 0.

The largest is Σ*.  How big is it?

Theorem: If Σ ≠ ∅ then Σ* is countably infinite.

Proof: The elements of Σ* can be lexicographically 
enumerated by the following procedure:

•  Enumerate all strings of length 0, then length 1, 

then length 2, and so forth.
•  Within the strings of a given length, enumerate 

them in dictionary order.

This enumeration is infinite since there is no longest 
string in Σ*.  Since there exists an infinite enumeration of 
Σ*, it is countably infinite.  

How Many Languages Are There?

Theorem: If Σ ≠ ∅ then the set of languages over Σ is 
uncountably infinite.

Proof: The set of languages defined on Σ is P(Σ*).  Σ* is 
countably infinite.  If S is a countably infinite set, P(S) is 
uncountably infinite.  So P(Σ*) is uncountably infinite.  
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Logic: Propositional and 
first-order

From Rich, Appendix A

Most of this material also appears in Grimaldi's Discrete Math book, 
Chapter 2

Boolean (Propositional) Logic Wffs

1. A propositional symbol (variable or constant) is a wff. 
2. If P is a wff, then ¬P is a wff.
3. If P and Q are wffs, then so are:

P ∨ Q, P ∧ Q, P → Q, P ↔ Q, and (P).

A wff (well-formed formula) is any string that is formed 
according to the following rules:

P Q ¬¬¬¬P P ∨∨∨∨ Q P ∧∧∧∧ Q P →→→→ Q P ↔↔↔↔ Q

True True False True True True True

True False False True False False False

False True True True False True False

False False True False False True True



11/29/2011

14

When Wffs are True

• A wff is valid or is a tautology iff it is true for all 
assignments of truth values to the variables it contains. 

• A wff is satisfiable iff it is true for at least one 
assignment of truth values to the variables it contains.  

• A wff is unsatisfiable iff it is false for all assignments 
of truth values to the variables it contains. 

• Two wffs P and Q are equivalent, written P ≡ Q, iff
they have the same truth values for every assignment 
of truth values to the variables they contain.     

Q6

P ∨ ¬P is a tautology: 
P ¬¬¬¬P P ∨∨∨∨ ¬¬¬¬P

True False True

False True True

Entailment

A set S of wffs logically implies or entails a conclusion Q
iff, whenever all of the wffs in S are true, Q is also true.  

Example:

{A ∧ B ∧ C, D} entails A → D
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Inference Rules

• An inference rule is sound iff, whenever it is 
applied to a set A of axioms, any conclusion 
that it produces is entailed by A.  

• An entire proof is sound iff it consists of a 
sequence of inference steps each of which 
was constructed using a sound inference rule.  

• A set of inference rules R is complete iff, 
given any set A of axioms, all statements that 
are entailed by A can be proved by applying 
the rules in R.  

Q7

Some Sound Inference Rules

• Modus ponens: From (P → Q) and P, 

conclude Q.

• Modus tollens: From (P → Q) and ¬Q, 

conclude ¬P.

• Or introduction: From P, conclude (P ∨ Q). 

• And introduction: From P and Q, conclude

(P ∧ Q).

• And elimination: From  (P ∧ Q), conclude P

or conclude Q.

• Syllogism: From  (P → Q) and (Q → R) , 
conclude (P → R) . Q3
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Additional Sound Inference Rules

• Quantifier exchange:

• From ¬∃x (P), conclude ∀x (¬P).

• From ∀x (¬P), conclude ¬∃x (P).

• From ¬∀x (P), conclude ∃x (¬P).

• From ∃x (¬P), conclude ¬∀x (P) .

• Universal instantiation: For any constant C, from 
∀x (P(x)), conclude P(C).

• Existential generalization: For any constant C, 
from P(C) conclude ∃x (P(x)).

First-Order Logic

• If P is an n-ary predicate and each of the expressions 
x1, x2, … , xn is a term, then an expression of the form 
P(x1, x2, … , xn) is a wff.  If any variable occurs in such 
a wff, then that variable occurs free in P(x1, x2, … , xn) .  

• If P is a wff, then ¬P is a wff.

• If P and Q are wffs, then so are P ∨ Q, P ∧ Q, P → Q, 
and P ↔ Q.

• If P is a wff, then (P) is a wff.

• If P is a wff, then ∀x (P) and ∃x (P) are wffs.  Any free 
instance of x in P is bound by the quantifier and is then 
no longer free. 

A term is a variable, constant, or function application.
A well-formed formula (wff) in first-order logic is an 
expression that can be formed by:

Q8



11/29/2011

17

Sentences

1. Bear(Smokey).

2. ∀x (Bear(x) → Animal(x)).

3. ∀x (Animal(x) → Bear(x)).

4. ∀x (Animal(x) → ∃y (Mother-of(y, x))).

5. ∀x ((Animal(x) ∧ ¬Dead(x)) → Alive(x)).

A wff with no free variables is called a sentence or a 
statement. 

A ground instance is a sentence that contains no 
variables, such as #1

Which of these sentences are true in the everyday world?

Q9

Interpretations and Models
• An interpretation for a sentence w is a pair (D, I), where  D

is a universe of objects.  I assigns meaning to the symbols 
of w: it assigns values, drawn from D, to the constants in w
and it assigns functions and predicates (whose domains 
and ranges are subsets of D) to the function and predicate 
symbols of w.

• A model of a sentence w is an interpretation that makes w
true.  For example, let w be the sentence:

∀x (∃y (y < x)).  

• A sentence w is valid iff it is true in all interpretations.

• A sentence w is satisfiable iff there exists some
interpretation in which w is true. 

• A sentence w is unsatisfiable iff ¬w is valid. 

Q10
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Examples

• ∀x ((P(x) ∧ Q(Smokey)) → P(x)).

• ¬(∀x (P(x) ∨ ¬(P(x))). 

• ∀x (P(x, x)).

A Simple Proof

Assume the following three axioms:

[1] ∀x (P(x) ∧ Q(x) → R(x)).
[2] P(X1).
[3] Q(X1). 

We prove R(X1) as follows:

[4] P(X1) ∧ Q(X1) → R(X1). (Universal instantiation, [1].)
[5] P(X1) ∧ Q(X1). (And introduction, [2], [3].)
[6] R(X1). (Modus ponens, [5], [4].)

Q11-12
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Definition of a  Theory
• A first-order theory is a set of axioms and the set of all 

theorems that can be proved, using a set of sound and 
complete inference rules, from those axioms. 

• A theory is logically complete iff, for every sentence P 
in the language of the theory, either P or ¬P is a 
theorem. 

• A theory is consistent iff there is no sentence P such 
that both P and ¬ P are theorems. 

– If there is such a sentence, then the theory contains a 
contradiction and is inconsistent.

• Let w be an interpretation of a theory.  The theory is 
sound with respect to w if every theorem in the theory 
corresponds to a statement that is true in w.


