
1/17/2012

1

Details on class implementation,

Interfaces and Polymorphism

Check out OnToInterfaces from SVN

1/17/2012

2

� Variable scope

� Packages recap

� Interfaces and polymorphism

� ScopeScopeScopeScope: the region of a program in which a
variable can be accessed
◦ Parameter scopeParameter scopeParameter scopeParameter scope: the whole method body

◦ Local variable scopeLocal variable scopeLocal variable scopeLocal variable scope: from declaration to block end:

� public double area() {

double sum = 0.0;

Point2D prev =

this.pts.get(this.pts.size() - 1);

for (Point2D p : this.pts) {

sum += prev.getX() * p.getY();

sum -= prev.getY() * p.getX();

prev = p;

}

return Math.abs(sum / 2.0);

}
Q1

1/17/2012

3

� Member scopeMember scopeMember scopeMember scope: anywhere in the class,
including before its declaration
◦ This lets methods call other methods later in the

class.

� public static class members can be
accessed from outside with “class qualified
names”

◦ Math.sqrt()

◦ System.in

Q2

public class TempReading {

private double temp;

public void setTemp(double temp) {

… temp …

}

// …

}

this.temp = temp;

What does this
“temp” refer

to?
Always qualify field references

with this. It prevents accidental
shadowing.

Q3

1/17/2012

4

� Static imports let us use unqualified names:

◦ import static java.lang.Math.PI;

◦ import static java.lang.Math.cos;

◦ import static java.lang.Math.sin;

� See the polygon.drawOn() method in the
DesigningClasses project

� Packages let us group
related classes

� We’ve been using them:

◦ javax.swing

◦ java.awt

◦ java.lang

1/17/2012

5

� Java built-in Timer class?
◦ java.util.Timer, javax.swing.Timer

◦ Packages allow us to specify which we want to use.

� Package naming convention: reverse URLs
◦ Examples:

� edu.roseHulman.csse.courseware.scheduling

� com.xkcd.comicSearch

Specifies the
company or
organization

Groups related
classes as

company sees fit

Q4

� Can use import to get classes from other
packages:

◦ import java.awt.Rectangle;

� Suppose we have our own Rectangle class
and we want to use ours and Java’s?
◦ Can use “fully qualified names”:

� java.awt.Rectangle rect =

new java.awt.Rectangle(10,20,30,40);

◦ U-G-L-Y, but sometimes needed.

1/17/2012

6

� Express common operations that multiple
classes might have in common

� Make “client” code more reusable

� Provide method signatures and
documentation

� Do notnotnotnot provide method implementations or
fields

Q5

� Interface types are like contractscontractscontractscontracts

◦ A class can promise to implementimplementimplementimplement an interface

� That is, implement every method

◦ Client code knows that the class will have those
methods

� Compiler verifies this

◦ Any client code designed to use the interface type
can automatically use the class!

1/17/2012

7

Charges Demo

I don’t even want this
package. Why did I

sign up for the
stinging insect of the
month club anyway?

1/17/2012

8

Distinguishes
interfaces

from classes

Hollow,
closed

triangular
tip means

PointCharge
is a is a is a is a Charge

Q6

public interface Charge {

/**

* regular javadocs here

*/

Vector forceAt(int x, int y);

/**

* regular javadocs here

*/

void drawOn(Graphics2D g);

}

public class PointCharge implements Charge {

…

}

interface, not class

No method
body, just a
semi-colon

No “public”,
automatically

are so

PointChargePointChargePointChargePointCharge promises to implement all the
methods declared in the ChargeChargeChargeCharge interface

1/17/2012

9

Interfaces reduce coupling!
Q7

� Can pass an instanceinstanceinstanceinstance of a class where an
interface type is expected
◦ But only if the class implements the interface

� We passed LinearCharges to Space’s
addCharge(Charge c) method without
changing Space!

� Use interface types Use interface types Use interface types Use interface types for field, method
parameter, and return types whenever
possible

Q8

1/17/2012

10

� Charge c = new PointCharge(…);

Vector v1 = c.forceAt(…);

c = new LinearCharge(…);

Vector v2 = c.forceAt(…);

� The type of the actual object actual object actual object actual object determines the
method used.

Q9

� Origin:
◦ Poly � many

◦ Morphism � shape

� Classes implementing an interface give many many many many
differently “shaped” objects for the interface differently “shaped” objects for the interface differently “shaped” objects for the interface differently “shaped” objects for the interface
typetypetypetype

� Late BindingLate BindingLate BindingLate Binding: choosing the right method
based on the actual type of the implicit
parameter at run timeat run timeat run timeat run time

Q10-Q11

1/17/2012

11

Homework 17: Board Games

Homework 17-18: BigRational

