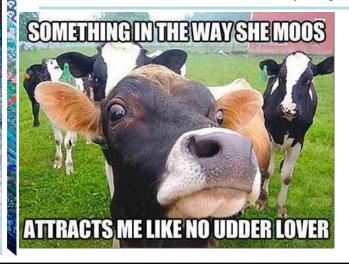


Your Questions?

- Previous class days' material
- Reading Assignments
- HW 15 problems
- Final Exam
- · Anything else



When released in 1969, Abbey Road was considered by many critics to be a disappointment. Now it is on many "best albums of all time lists". For example, #14 on Rolling Stone's list, #5 on thetoptens.com.

Reducing Language L₁ to L₂

Language L_1 (over alphabet Σ_1) is mapping reducible to language L_2 (over alphabet Σ_2) and we write $L_1 \leq L_2$ if there is a Turing-computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that

 $\forall x \in \Sigma_1^*, x \in L_1$ if and only if $f(x) \in L_2$

Application: If L1 is a language that is known to not be in D, and we can find a reduction from L1 to L2, then L2 is also not in D.

H_{ANY} is not in D (reduction 1)

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

R

(?Oracle) $H_{ANY} = {\langle M \rangle}$: there exists at least one string on which TM M halts} $R(\langle M, w \rangle) =$

- 1. Construct < M#>, where M#(x) operates as follows:
 - 1.1. Examine x.
 - 1.2. If x = w, run M on w, else loop.
- 2. Return < M#>.

If Oracle exists, then C = Oracle(R(< M, w>)) decides H:

- R can be implemented as a Turing machine.
- C is correct: The only string on which M# can halt is w. So:
 - <*M*, *w*> ∈ H: *M* halts on *w*. So *M*# halts on *w*. There exists at least one string on which *M*# halts. *Oracle* accepts.
 - <*M*, *w*> ∉ H: *M* does not halt on *w*, so neither does *M*#. So there exists no string on which *M*# halts. *Oracle* rejects.

But no machine to decide H can exist, so neither does Oracle.

H_{ANY} is not in D (reduction 2)

Proof: We show that H_{ANY} is not in D by reduction from H:

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$ R

(?Oracle) H_{ANY} = {<*M*> : there exists at least one string on which TM *M* halts}

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return < M#>.

If Oracle exists, then C = Oracle(R(< M, w>)) decides H:

- C is correct: M# ignores its own input. It halts on everything or nothing. So:
 - <*M*, *w*> ∈ H: *M* halts on *w*, so *M*# halts on everything. So it halts on at least one string. *Oracle* accepts.
 - <*M*, *w*> ∉ H: *M* does not halt on *w*, so *M*# halts on nothing. So it does not halt on at least one string. *Oracle* rejects.

But no machine to decide H can exist, so neither does Oracle.

The Steps Proving L₂ undecidable

- 1. ♦ Choose an undecidable language L₁ to reduce from.
- 2. Define the reduction R.
- Show that C (the composition of R with Oracle, if Oracle exists) is correct. I.e. it decides L₁ (this is a contradiction)
- o indicates where we make choices.

Undecidable Problems (Languages That Aren't In D)

The Problem View	The Language View
Does TM M halt on w?	$H = \{ \langle M, w \rangle : M \text{ halts on } w \}$
Does TM M not halt on w?	$\neg \mathbf{H} = \{ \langle M, w \rangle : \\ M \text{ does not halt on } w \}$
Does TM <i>M</i> halt on the empty tape?	$H_{\varepsilon} = \{ \langle M \rangle : M \text{ halts on } \varepsilon \}$
Is there any string on which TM <i>M</i> halts?	$H_{ANY} = \{ \langle M \rangle : \text{ there exists at least one string on which TM } M \text{ halts } \}$
Does TM M accept all strings?	$A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$
Do TMs M_a and M_b accept the same languages?	EqTMs = $\{ < M_a, M_b > : L(M_a) = L(M_b) \}$
Is the language that TM <i>M</i> accepts regular?	$TMreg = { < M > : L(M) \text{ is regular} }$

Next: We examine proofs of some of these (some are also done in the textbook)

$H_{ALL} = \{ < M > : TM M halts on all inputs \}$

We show that H_{ALL} is not in D by reduction from H_{ϵ} . Note: We reduce from H_{ϵ} , not H

$$H_{\varepsilon} = \{ < M > : TM M halts on \varepsilon \}$$

(?Oracle)

 $H_{ALL} = \{ < M > : TM M halts on all inputs \}$

R(< M>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Run *M*.
- 2. Return < M#>.

If *Oracle* exists, then C = Oracle(R(<M>)) decides H_{ϵ} :

- R can be implemented as a Turing machine.
- C is correct: M# halts on everything or nothing, depending on whether M
 halts on ε. So:
 - <*M* $> \in H_s$: *M* halts on ε , so *M*# halts on all inputs. *Oracle* accepts.
 - <*M* $> \notin H_{\epsilon}$: *M* does not halt on ϵ , so *M*# halts on nothing. *Oracle* rejects.

But no machine to decide H_{ϵ} can exist, so neither does *Oracle*.

The Membership Question for TMs

We next define a new language:

$$A = \{ \langle M, w \rangle : M \text{ accepts } w \}$$

Note that A is different from H since it is possible that *M* halts but does not accept.

An alternative definition of A is:

$$A = \{ < M, w > : w \in L(M) \}$$

$A = \{ < M, w > : w \in L(M) \}$

We show that A is not in D by reduction from H.

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

(?Oracle)

 $A = \{ < M, \ w > : w \in L(M) \}$

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept
- 2. Return < M#, w>.

If Oracle exists, then C = Oracle(R(< M, w>)) decides H:

- R can be implemented as a Turing machine.
- C is correct: M# accepts everything or nothing. So:
 - <M, w> ∈ H: M halts on w, so M# accepts everything. In particular, it accepts w. Oracle accepts.
 - <M, w > ∉ H: M does not halt on w. M# gets stuck in step 1.3 and so accepts nothing. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

A_{ϵ} , A_{ANY} , and A_{ALL}

Theorem: $A_{\epsilon} = \{ < M > : TM \ M \ accepts \ \epsilon \}$ is not in D.

Proof: Analogous to that for H_{ϵ} .

Theorem:

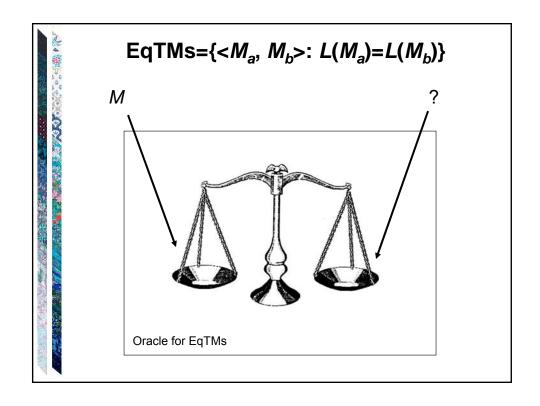
 $A_{ANY} = {< M> : TM M accepts at least one string}$

is not in D.

Proof: Analogous to that for H_{ANY}.

Theorem: $A_{ALL} = \{ <M> : = L(M) = \Sigma^* \}$ is not in D.

Proof: Analogous to that for H_{ALL} .



EqTMs= $\{< M_a, M_b>: L(M_a)=L(M_b)\}$ $A_{ANY} = \{ \langle M \rangle \}$ TM M accepts at least one string $\}$ (Oracle) EqTMs = $\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}$ $R(\langle M \rangle) =$ 1. Construct the description of M#(x): 1.1. Accept. 2. Return < M, M#>. If Oracle exists, then C = Oracle(R(< M>)) decides A_{ANY} : • *C* is correct: *M*# accepts everything. So: • < $M> \in A_{ANY}$: L(M) = ? L(M#). Oracle ? Oops. • <*M* $> \notin A_{ANY}$: $L(M) \neq L(M\#)$. *Oracle* rejects.

EqTMs= $\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}$

$$A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$$

$$R \mid$$

(Oracle) EqTMs = $\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}$

R(< M>) =

- 1. Construct the description of M#(x):
 - 1.1. Accept.
- 2. Return < M, M#>.

If Oracle exists, then C = Oracle(R(< M>)) decides A_{ALL} :

- C is correct: M# accepts everything. So if L(M) = L(M#), M must also accept everything. So:
 - <*M* $> \in$ A_{ALL}: L(M) = L(M#). Oracle accepts. <*M* $> \notin$ A_{ALL}: $L(M) \neq L(M\#)$. Oracle rejects.

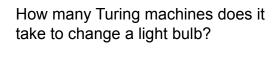
But no machine to decide A_{ALL} can exist, so neither does *Oracle*.

A Practical Consequence

Consider the problem of virus detection. Suppose that a new virus V is discovered and its code is < V >.

- Is it sufficient for antivirus software to check solely for occurrences of <*V*>?
- Is it possible for it to check for equivalence to *V*?

How many Turing machines does it take to change a light bulb?



One.

How can you tell whether your Turing machine is the one?

You can't!

Practice

Practice: Show that these languages are not in D.

 $-A_{ANY} = {< M> : TM M accepts at least one string}$

 $-\mathsf{A}_{\mathsf{ALL}} = \{<\!\!M\!\!> : \ L(M) = \Sigma^*\!\}$

 $-REJ = \{ \langle M, w \rangle : \text{Turing machine } M \text{ rejects } w \}$

Note: Each can be shown by a reduction from H.

Sometimes Mapping Reduction Doesn't Work

Recall that a mapping reduction from L_1 to L_2 is a computable function f where:

$$\forall x \in \Sigma^* (x \in L_1 \leftrightarrow f(x) \in L_2).$$

When we use a mapping reduction, we return:

Oracle(f(x))

Sometimes we need to use *Oracle* as a subroutine and then do other computations after it returns.

{<M>: M accepts no even length strings}

 $H = \{ < M, w > : TM M \text{ halts on input string } w \}$

↓*F*

(?Oracle) $L_2 = \{ < M > : M \text{ accepts no even length strings} \}$

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept.
- 2. Return < M#>.

If Oracle exists, then C = Oracle(R(< M, w>)) decides H:

- C is correct: M# ignores its own input. It accepts everything or nothing, depending on whether it makes it to step 1.4. So:
 - $\langle M, w \rangle \in H$: M halts on w. Oracle:
 - <*M*, *w*> ∉ H: *M* does not halt on *w*. Oracle:

Problem:

{<M>: M accepts no even length strings}

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

₽R

(?Oracle)

 $L_2 = \{ < M > : M \text{ accepts no even length strings} \}$

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept.
- 2. Return < M#>.

If Oracle exists, then $C = \neg Oracle(R(< M, w>))$ decides H:

- R and ¬ can be implemented as Turing machines.
- C is correct:
 - <M, w> ∈ H: M halts on w. M# accepts everything, including some even length strings. Oracle rejects so C accepts.
 - <*M*, *w*> ∉ H: *M* does not halt on *w*. *M*# gets stuck. So it accepts nothing, so no even length strings. *Oracle* accepts. So *C* rejects.

But no machine to decide H can exist, so neither does Oracle.

Are All Questions about TMs Undecidable?

Let $L = {< M> : TM M contains an even number of states}$

Let $L = \{ \langle M, w \rangle : M \text{ halts on } w \text{ within 3 steps} \}$.

Let $L_q = \{ < M, q > : \text{ there is some configuration } \}$

 $(p, u\underline{a}v)$ of M, with $p \neq q$,

that yields a configuration whose state is q }.

Is L_q decidable?

Is There a Pattern?

- Does L contain some particular string w?
- Does *L* contain ε?
- Does *L* contain any strings at all?
- Does L contain all strings over some alphabet Σ ?
- A = $\{ < M, w > : TM M \text{ accepts } w \}$.
- $A_{\varepsilon} = \{ < M > : TM M \text{ accepts } \varepsilon \}.$
- $A_{ANY} = {< M> :}$ there exists at least one string that
 - TM M accepts).
- $A_{ALL} = {< M> : TM M accepts all inputs}.$

Rice's Theorem

No nontrivial property of the SD languages is decidable.

or

Any language that can be described as:

$${: P(L(M)) = True}$$

for any nontrivial property P, is not in D.

A *nontrivial property* is one that is not simply:

- True for all languages, or
- False for all languages.

Because of time constraints, we will skip the proof of this theorem.

Applying Rice's Theorem

To use Rice's Theorem to show that a language *L* is not in D we must:

- Specify property P.
- Show that the domain of *P* is the SD languages.
- Show that P is nontrivial:
 - P is true of at least one language
 - P is false of at least one language

Applying Rice's Theorem

- 1. $\{ < M > : L(M) \text{ contains only even length strings} \}$.
- 2. $\{<M>: L(M) \text{ contains an odd number of strings}\}$.
- 3. $\{<M>: L(M) \text{ contains all strings that start with a}\}$.
- 4. $\{ \langle M \rangle : L(M) \text{ is infinite} \}$.
- 5. $\{ < M > : L(M) \text{ is regular} \}$.
- 6. {<*M*> : *M* contains an even number of states}.
- 7. {<*M*> : *M* has an odd number of symbols in its tape alphabet}.
- 8. $\{<M>: M \text{ accepts } \varepsilon \text{ within 100 steps}\}$.
- 9. $\{<M>: M \text{ accepts } \epsilon\}$.
- 10. $\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}.$

The problem: Is L(M) regular?

As a language: Is $\{ < M > : L(M) \text{ is regular} \}$ in D?

No, by Rice's Theorem:

- P = True if L is regular and False otherwise.
- The domain of *P* is the set of SD languages since it is the set of languages accepted by some TM.
- *P* is nontrivial:
 - $P(a^*) = True$
 - ♦ $P(A^nB^n) = False$.

We can also show it directly, using reduction. (Next slide)

Given a Turing Machine M, is L(M) Regular?

 $H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$

(Oracle)

 $L_2 = \{ \langle M \rangle : L(M) \text{ is regular} \}$

R(< M, w>) =

- 1. Construct *M*#(*x*):
 - 1.1. Copy its input x to another track for later.
 - 1.2. Erase the tape.
 - 1.3. Write w on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Put x back on the tape.
 - 1.6. If $x \in A^nB^n$ then accept, else reject.
 - 2. Return < M#>.

Problem:

But We Can Flip

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Save *x* for later.
 - 1.2. Erase the tape.
 - 1.3. Write w on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Put x back on the tape.
 - 1.6. If $x \in A^nB^n$ then accept, else reject.
- 2. Return < M#>.

If Oracle decides L_2 , then $C = \neg Oracle(R(< M, w>))$ decides H:

- <M, w> \in H: M# makes it to step 1.5. Then it accepts x iff $x \in A^nB^n$. So M# accepts A^nB^n , which is not regular. Oracle rejects. C accepts.
- <M, w> ∉ H: M does not halt on w. M# gets stuck in step 1.4.
 It accepts nothing. L(M#) = Ø, which is regular.
 Oracle accepts. C rejects.

But no machine to decide H can exist, so neither does Oracle.

Or, Show it Without Flipping

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. If $x \in A^nB^n$ then accept, else:
 - 1.2. Erase the tape.
 - 1.3. Write w on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Accept
- 2. Return < M#>.

If Oracle exists, C = Oracle(R(< M, w>)) decides H:

- C is correct: M# immediately accepts all strings in AnBn:
 - <*M*, w> \in H: M# accepts everything else in step 1.5. So $L(M\#) = \Sigma^*$, which is regular. *Oracle* accepts.
 - <M, w> ∉ H: M# gets stuck in step 1.4, so it accepts nothing else. L(M#) = AⁿBⁿ, which is not regular. Oracle rejects.

But no machine to decide H can exist, so neither does *Oracle*.

Any Nonregular Language Will Work

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. If $x \in WW$ then accept, else:
 - 1.2. Erase the tape.
 - 1.3. Write *w* on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Accept
- 2. Return < M#>.

If Oracle exists, C = Oracle(R(< M, w>)) decides H:

- C is correct: M# immediately accepts all strings ww:
 - <M, w> ∈ H: M# accepts everything else in step 1.5. So L(M#) = Σ*, which is regular. Oracle accepts.
 - <*M*, *w*> ∉ H: *M*# gets stuck in step 1.4, so it accepts nothing else. *L*(*M*#) = WW, which is not regular. *Oracle* rejects.

But no machine to decide H can exist, so neither does *Oracle*.

Is L(M) Context-free?

How about: $L_3 = {<M> : L(M) \text{ is context-free}}?$

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. If $x \in A^nB^nC^n$ then accept, else:
 - 1.2. Erase the tape.
 - 1.3. Write *w* on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Accept
- 2. Return < M#>.

Practical Impact of These Results

- 1. Does P, when running on x, halt?
- 2. Might *P* get into an infinite loop on some input?
- 3. Does *P*, when running on *x*, ever output a 0? Or anything at all?
- 4. Are P_1 and P_2 equivalent?
- 5. Does *P*, when running on *x*, ever assign a value to *n*?
- 6. Does *P* ever reach *S* on any input (in other words, can we chop it out?
- 7. Does *P* reach *S* on every input (in other words, can we guarantee that *S* happens)?
- Can the Patent Office check prior art?
- Can the CS department buy the definitive grading program?

Turing Machine Questions Can be Reduced to Program Questions

EqPrograms =

 $\{\langle P_a, P_b \rangle : P_a \text{ and } P_b \text{ are } PL \text{ programs and } L(P_a) = L(P_b)\}.$

We can build, in any programming language PL, SimUM:

- that is a *PL* program
- that implements the Universal TM U and so can simulate an arbitrary TM.

{<M, q> : M reaches q on some input}

Hidden: M reaches q on some input

 $H_{ANY} = \{ < M > : \text{ there exists some string on which TM } M \text{ halts} \}$

R

(?Oracle) $L_2 = \{ < M, q > : M \text{ reaches } q \text{ on some input} \}$

R(< M>) =

1. Build <*M#*> so that *M#* is identical to *M* except that, if *M* has a transition $((q_1, c_1), (q_2, c_2, d))$ and q_2 is a halting state other than h, replace that transition with:

 $((q_1, c_1), (h, c_2, d)).$

2. Return < M#, h>.

If Oracle exists, then C = Oracle(R(< M>)) decides H_{ANY} :

- R can be implemented as a Turing machine.
- *C* is correct: *M*# will reach the halting state *h* iff *M* would reach some halting state. So:
 - < M> \in H_{ANY} : There is some string on which M halts. So there is some string on which M# reaches state h. Oracle accepts.
 - <*M*> ∉ H_{ANY}: There is no string on which *M* halts. So there is no string on which *M*# reaches state *h*. *Oracle* rejects.

But no machine to decide H_{ANY} can exist, so neither does *Oracle*.

Side Road with a purpose: obtainSelf

From Section 25.3:

In section 25.3, the author proves the existence of a very useful computable function: *obtainSelf*. When called as a subroutine by any Turing machine M, *obtainSelf* writes <M> onto M's tape.

Related to quines:

A quine is a computer program which takes no input and produces a copy of its own source code as its only output.

Definition is from http://en.wikipedia.org/wiki/Quine (computing)

Some quines

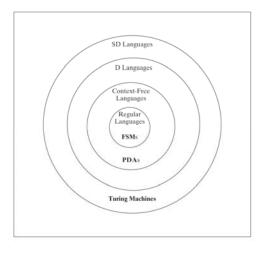
- main(){char q=34, n=10,*a="main() {char q=34,n=10,*a=%c%s%c; printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}
- ((lambda (x) (list x (list 'quote x)))
 (quote (lambda (x) (list x (list 'quote x)))))
- Quine's paradox and a related sentence:

"Yields falsehood when preceded by its quotation" yields falsehood when preceded by its quotation.

"quoted and followed by itself is a quine." quoted and followed by itself is a quine.

Non-SD Languages

There is an uncountable number of non-SD languages, but only a countably infinite number of TM's (hence SD languages). ∴The class of non-SD languages is <u>much</u> bigger than that of SD languages!



Non-SD Languages

Intuition: Non-SD languages usually involve either infinite search (where testing each potential member could loop forever), or determining whether a TM will infinite loop.

Examples:

- $\neg H = \{ \langle M, w \rangle : TM \ M \text{ does } not \text{ halt on } w \}.$
- $\{ < M > : L(M) = \Sigma^* \}.$
- {<*M*> : TM *M* halts on nothing}.

Proving Languages are not SD

- Contradiction
- L is the complement of an SD/D Language.
- Reduction from a known non-SD language

Contradiction

Theorem: TM_{MIN} =

{<*M*>: Turing machine *M* is minimal} is not in SD.

Proof: If TM_{MIN} were in SD, then there would exist some Turing machine *ENUM* that enumerates its elements. Define the following Turing machine:

M#(x) =

- 1. Invoke *obtainSelf* to produce <*M#*>.
- 2. Run *ENUM* until it generates the description of some Turing machine *M*′whose description is longer than |<*M*#>|.
- 3. Invoke U on the string $\langle M', x \rangle$.

Since TM_{MIN} is infinite, *ENUM* must eventually generate a string that is longer than |<M#>|. So M# makes it to step 3 and thus M# is Equivalent to M' since it simulates M'. But, since |<M#>| < |<M>|, M' cannot be minimal.

But M#'s description was generated by *ENUM*. Contradiction.

The Complement of L is in SD/D

Suppose we want to know whether *L* is in SD and we know:

- $\neg L$ is in SD, and
- At least one of *L* or $\neg L$ is not in D.

Then we can conclude that L is not in SD, because, if it were, it would force both itself and its complement into D, which we know cannot be true.

Example:

• \neg H (since $\neg(\neg H)$ = H is in SD and not in D)

$A_{anbn} = \{ < M > : L(M) = A^n B^n \}$

A_{anbn} contains strings that look like:

```
(q00, a00, q01, a00, \rightarrow),

(q00, a01, q00, a10, \rightarrow),

(q00, a10, q01, a01, \leftarrow),

(q00, a11, q01, a10, \leftarrow),

(q01, a00, q00, a01, \rightarrow),

(q01, a01, q01, a10, \rightarrow),

(q01, a10, q01, a11, \leftarrow),

(q01, a11, q11, a01, \leftarrow)
```

It does not contain strings like aaabbb.

But AnBn does.

```
Aanbn = \{<M>: L(M) = A^nB^n\}

What's wrong with this proof that A_{anbn} is not in SD?

\neg H = \{<M, w> : TM \ M \ does \ not \ halt \ on \ w\}
\downarrow R
(?Oracle) \qquad A_{anbn} = \{<M>: L(M) = A^nB^n\}
R(<M, w>) = 
1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.
1.4. Accept.
2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) semidecides \neg H:
```

$A_{anbn} = {\langle M \rangle : L(M) = A^nB^n} \text{ is not SD}$

R(< M, w>) reduces $\neg H$ to A_{anbn} : 1. Construct the description < M#>:

- - 1.1. If $x \in A^nB^n$ then accept. Else:
 - 1.2. Erase the tape.
 - 1.3. Write *w* on the tape.
 - 1.4. Run *M* on *w*.
 - 1.5. Accept.
- 2. Return < M#>.

If *Oracle* exists, then C = Oracle(R(< M, w>)) semidecides $\neg H$: M# immediately accepts all strings in AⁿBⁿ. If M does not halt on w, those are the only strings M# accepts. If M halts on w, M# accepts everything:

- <*M*, w $> \in \neg H$: *M* does not halt on w, so M# accepts strings in AⁿBⁿ in step 1.1. Then it gets stuck in step 1.4, so it accepts nothing else. It is an AⁿBⁿ acceptor. *Oracle* accepts.
- < M, $w > \notin \neg H$: M halts on w, so M# accepts everything. Oracle does not accept.

But no machine to semidecide —H can exist, so neither does *Oracle*.