ST B

s

S R AR P ST AT

: ; MA/CSSE 474
Theory of Computation

More Reduction Examples
Non-SD Reductions

RN R AR T

Your Questions?
 Previous class days' « HW 15 problems
= material + Final Exam

.+ Reading Assignments Anything else

Excerpt from an obituary in the Terre
Haute Tribune Star. May 12, 2018:
Lane was a kind and generous person who

never hesitated to offer help to those who

asked for it. He had a brilliant mind and keen
imagination. He will be missed by his loving

family and friends, as well as, the leeches who

fed upon his generosity and mischievous spirit;
they will have to find a new host now.

i

- Reducing Language L, to L,
; :3 Language L, (over alphabet %,) is

§' mapping reducible to language L,
(over alphabet X%,) and we write L, < L, if

there is a Turing-computable function
f:Z* > Z," such that

Vx € %, x € L, ifand only if f(x) € L,

Using Reduction for Undecidability

(R is a reduction from L, to L,) A (L, is in D) — (L, is in D)

If (L, is in D) is false, then at least one of the two
antecedents of that implication must be false. So:

If (R is a reduction from L, to L,) is true
and (L1isin D) is false,
then (L, is in D) must be false.

Application: If L1 is a language that is known to not be in
D, and we can find a reduction from L1 to L2, then L2 is
also not in D.

Using Reduction for Undecidability

Showing that L, is not in D:

L, (knownnottobeinD) L;inD ButL, notinD
: | | |
L, (anew language whose ifL,in D L, notin D

decidability we are
trying to determine)

To Show L2 undecidable

1. Choose a language L, that is already known not to be in D,
A. Assume a TM Oracle that decides L,
B. show that L, can be reduced to L,

Details:

2. Define the reduction R.

3. Describe the composition C of R with Oracle.

4. Show that C correctly decides L, iff Oracle exists. We
do this by showing:
¢ R can be implemented by Turing machines,
e C is correct:
e Ifx € L4, then C(x) accepts, and Follow this outline in
o Ifx ¢ L,, then C(x) rejects. proofs that you

First Reduction Example: submit.. We wiIIlsee
H, = {<M> : TM M halts on &} many examples in the

next few sessions.

show H, in SD but notin D

1. H.is in SD. T semidecides it:
T(<M>) =

1. Run M on e.
2. Accept.

T accepts <M> iff M halts on ¢, so T semidecides

* Recall: "M halts on w" is a short way of saying
"M, when started with input w, eventually halts"

H, = {<M>:TM M halts on &}

2. Theorem: H, = {<M>: TM M halts on &} is not in D.

H, < H is intuitive, the other

Proof: by reduction from H to H, : resiomn & 160 56 alais.

H = {<M, w>: TM M halts on input string w}
R
(?Oracle) H, {<M>:TM M halts on &}

R is a reduction from H to H,:
R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.
1.3. Run M on w.
2. Return <M#>.

Proof, Continued

R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.
1.3. Run M on w.
2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:

e C is correct: M# ignores its own input. It halts on every input or
no inputs. So there are two cases:
e <M, w> € H: M halts on w, so M# halts on everything. In
particular, it halts on €. Oracle accepts.
e <M, w> ¢ H: M does not halt on w, so M# halts on nothing and
thus not on ¢. Oracle rejects.

A Block Diagram of C

<M, w=

| > Accept

T

build M# Mi Is M#in H.?

|7 Reject

R Oracle

Note: In the last two places where M# appears
in this diagram, it should be <M#>

R Can Be Implemented as a Turing Machine

R must construct <M#> from <M, w>. Suppose w = aba.

M# will be: |
- —|D I:I
O
So the procedure for constructing M# is: aRbRalgM
H . {
1. Write: R -0 |:|
m]
Y
2. For each character x in w do:
2.1. Write x.
2.2. If x is not the last character in w, write R.
3. Write L, M.
Conclusion

R can be implemented as a Turing machine.
C is correct.
So, if Oracle exists:
C = Oracle(R(<M, w>)) decides H.
But no machine to decide H can exist.

So neither does Oracle.

This Result is Somewhat Surprising

If we could decide whether M halts on the specific string ¢, we
could solve the more general problem of deciding whether M
halts on an arbitrary input.

Clearly, the other way around is true: If we could solve H we
could decide whether M halts on any one particular string.

But we used reduction to show that H undecidable implies
H, undecidable; this is not at all obvious.

Different Languages Are We Dealing With?

H = {<M, w>: TM M halts on input string w}
R
(?Oracle) H, {<M>:TM M halts on &}

H contains strings of the form:
(9q00,a00,901,a10,<-),(q00,a00,q01,a10,-),...,aaa

H, contains strings of the form:
(900,a00,901,a10,<-),(q00,a00,q01,210,-),...

The language on which some M halts contains strings of some
arbitrary form, for example,

(letting X = {a, b}): aaaba

Different Machines Are We Dealing With?

H ={<M, w>: TM M halts on input string w}
R
(?Oracle) H, {<M>:TM M halts on &}

R is a reduction from H to He:
R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.
2. Return <M#>.

e Oracle (the hypothesized machine to decide H,).

e R (the machine that builds M#. Actually exists).

e C (the composition of R with Oracle).

e M# (the machine we will pass as input to Oracle). Note that we never run it.

e M (the machine with an encoding whose membership in H we are
interested in determining; thus also an input to R).

A Block Diagram of C

<M, w=
|
| > Accept
build M# M | Is M#in H.? il
|7 Reject
R Oracle
{ &

Note: In the last twoplaces where M# appears
in this diagram, it should be <M#>

Another Way to View the Reduction

/l'let L ={<M>| M is a TM that halts when its input is epsilon}
/Il if L is decidable, let the following function decide L:

boolean haltsOnEpsilon(TM M); [/ defined in magic.h

/" HaltsOn decides H using HaltsOnEpsilon
// .: HaltsOn reduces to HaltsOnEpsilon:

bool haltsOn(TM M, string w) {
void wrapper(string iDontCare) {// a nested TM
M(w);
} {/l end of nested TM
return haltsOnEpsilon(wrapper);

}

If HaltsOnEpsilon is a decision procedure, so is HaltsOn.
But of course HaltsOn is not, so neither is HaltsOnEpslipn

Important Elements in a Reduction Proof

. A clear declaration of the reduction “from” and “to”
languages.

* A clear description of R.

.+ If R is doing anything nontrivial, argue that it can be
implemented as a TM.

* Note that machine diagrams are not necessary or even
sufficient in these proofs. Use them as thought devices,
where needed.

i * Run through the logic that demonstrates how the “from”
language is being decided by the composition of R and
Oracle. You must do both accepting and rejecting
cases.

» Declare that the reduction proves that your “to” language
is not in D.

The Most Common Mistake:
Doing the Reduction Backwards

The right way to use reduction to show that L, is not in D:

1. Given that L, is not in D, L,
2. Reduce L, to L,, i.e., show how to solve L, l
(the known one) in terms of L, (the unknown one) L,

Doing it wrong by reducing L, (the unknown one) to L,:

If there exists a machine M, that solves H, then we could build a
machine that solves L, as follows:

1. Return (M,(<M, &>)).
This proves nothing. It's an argument of the form:

If False then ...

Next Example:
- Hany = {<M>: there exists at least one
B string on which TM M halts}
2
%Theorem: Hany is in SD.
% B Proof: by exhibiting a TM T that semidecides it.

“ & What about simply trying all the strings in X* one at a time
. Runtil one halts?

10

Hany 1S 1IN SD
T(<M>) =
1. Use dovetailing™ to try M on all of the elements of £*:

[1]
[2]
[3]
[4]
[5]

[1]

[2] b [1]

[3] b [2] aa [1]

[4] b _[3] aa [2] ab [1]

m om om omom
SR IR I

2. If any instance of M halts, halt and accept.

T will accept iff M halts on at least one string. So T
semidecides H,yy

* http://en.wikipedia.org/wiki/Dovetailing (computer science)

Hany IS NOtin D

11

Hidden: H,yy is notin D

H ={<M, w>: TM M halts on input string w}
R
(?Oracle) Huyy = {<M>: there exists at least one string on which TM M halts}

R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Examine x.
1.2. If x =w, run M on w, else loop.
2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:
e R can be implemented as a Turing machine.
e C is correct: The only string on which M# can halt is w. So:
o <M, w> ¢ H: M halts on w. So M# halts on w. There exists at least one
string on which M# halts. Oracle accepts.
e <M, w> ¢ H: M does not halt on w, so neither does M#. So there exists
no string on which M# halts. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

Hidden: (Another R That Works)

Proof: We show that H,yy is not in D by reduction from H:
H ={<M, w>: TM M halts on input string w}
R

(?Oracle) Hpyy = {<M>: there exists at least one string on which TM M
halts}

R(<M, w>) =
1. Construct the description <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.
2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:
e C is correct: M# ignores its own input. It halts on everything or nothing. So:
e <M, w> e H: M halts on w, so M# halts on everything. So it halts on at
least one string. Oracle accepts.
e <M, w> ¢ H: M does not halt on w, so M# halts on nothing. So it does not
halt on at least one string. Oracle rejects.
But no machine to decide H can exist, so neither does Oracle.

12

The Steps in a Reduction Proof

1. & Choose an undecidable language to reduce from.
2. & Define the reduction R.
3. Show that C (the composition of R with Oracle) is

correct.

« indicates where we make choices.

Undecidable Problems
(Languages That Aren’t In D)

The Problem View The Language View
Does TM M halt on w? H={<M, w>:
M halts on w}
Does TM M not halt on w? —H ={<M, w>:
M does not halt on w}
Does TM M halt on the empty tape? H.= {<M>:M halts on ¢}
Is there any string on which TM M halts? Huny = {<M> : there exists at least
one string on which TM M halts }
Does TM M accept all strings? Ay = {<M>:L(M) = Z*}
Do TMs M, and M, accept the same languages? | EqTMs =
{<M,, Mp>: L(M,) =L(M,)}
Is the language that TM M accepts regular? TMreg =
{<M>:L(M) is regular}

Next: We examine proofs of some of these (some are also done in the
textbook)

13

