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MA/CSSE 474
Theory of Computation

Halting Problem
Decidable and Semidecidable

Does This Program Always Halt?
times3(x: positive integer) = 

while x  1 do:
if x is even then x = x/2.
else x = 3x + 1

times3(25) …

max = 100000
maxCount = 0
for i in range(1, max+1):

current = i
count = 0

while current != 1:
count += 1
if current % 2 == 0:

current /= 2
else:

current = 3 * current + 1

print "%7d %7d" % (i, count)
if count > maxCount:

maxCount = count

print "maxCount = ", maxCount

Lothar Collatz, 1937, conjectured 
that times3 halts for all positive 
integers n.  Still an open problem.

Paul Erdős: "Mathematics is not 
yet ready for such confusing, 
troubling, and hard problems." 

http://mathworld.wolfram.com/Collatz
Problem.html
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Collatz function example
27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 
161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 
103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 
395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 
502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 
4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 
2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 
866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 
92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 
4, 2, 1

The Language H

Theorem:  The language: 

H = {<M, w> : TM M halts on input string w} 

● is semidecidable, but
● is not decidable.

Proof soon!  via two lemmas ..

We know that we can decide the halting question for 
specific simple TMs.

Or can we … ?
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H is Semidecidable

Lemma: The language:

H = {<M, w> : TM M halts on input string w}

is semidecidable.  

Proof: The TM M'H semidecides H:

M'H(<M, w>) = 
1. Run M on w.
2. Accept.

M'H accepts <M, w> if and only if 
M halts on w. 

Thus M'H semidecides H. 

Details of step 1:
• Write <M,w> on U's first tape.
• Run U U is the Universal 

Turing Machine

What do we mean 
by "halts on w"?

H is Not Decidable

Lemma: The language:

H = {<M, w> : TM M halts on input string w} 

is not decidable.

Outline of proof: 
By contradiction…

Specification of halts function.
Trouble [in (Wabash) River City)]
halts(<Trouble, Trouble>)  - what happens?
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The Undecidability of the Halting Problem

Lemma: The language:

H = {<M, w> : TM M halts on input string w} 

is not decidable.

Proof (by contradiction): Assume that H is decidable.
Then some TM MH would decide it.  MH would implement 
the specification:

halts(<M, w>) =
if <M> is a Turing machine description 

and M halts on w
then accept.  
else reject.

Trouble [in (Wabash) River City)]
Trouble(x: string) =

if halts(<x, x>) then loop forever, else halt.

If there is an MH that computes the function halts, Trouble exists: 

Consider halts(<Trouble, Trouble>):  
● If MH reports that Trouble(<Trouble>) halts, Trouble loops.
● But if MH reports that Trouble(<Trouble>) does not halt, then 

Trouble halts.

C# is the machine from 
several class sessions 
ago that  makes a copy 
of the non-blank 
characters on the tape.

Note that it is important 
to this proof  that Trouble 
be constructible from MH

1 means yes
0 means no
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● Lexicographically enumerate Turing machine encodings and input 
strings.

● Let 1 mean halting, blank mean non halting.

Viewing the Halting Problem as Diagonalization

i1 i2 i3 … <Trouble> …

<machine1> 1

machine2> 1

machine3> 1

… 1

<Trouble> 1 1

… 1 1 1

… 1

If MH exists and decides membership in H, it must be 
able to correctly fill in any cell in this table.

What about the shaded square?

Decidable and Semidecidable 
Languages
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If  H were in D, then SD would equal D

Theorem: If H were in D then every SD language would be in D.

Proof: Let L be any SD language.  There exists a TM ML that 
semidecides it. The following machine M' decides whether w is in 
L(ML):

Recall: H = {<M, w> : TM M halts on input string w}
We know that HSD.  If H were also in D, then there 
would exist a TM MH that decides it.  

M'(w: string) = 
1. Run MH on <ML, w>. (MH will always halt)
2. If MH accepts (i.e., ML will halt on input w), then:

2.1. Run ML on w.
2.2. If it accepts, accept.  
2.3  Else reject.

3. Else reject.

Every CF Language is in D

Theorem: The set of context-free languages is a proper
subset of D.

Proof:
● Every context-free language is decidable, so the context-

free languages are a subset of D.  
● There is at least one language, AnBnCn, that is decidable 

but not context-free.  

So the context-free languages are a proper subset of D. 
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Decidable and Semidecidable Languages
Almost every obvious language that is in SD is also in D:

● AnBnCn = {anbncn, n ≥ 0}
● {wcw, w  {a, b}*}
● {ww, w  {a, b}*}
● {xy=z: x,y,z  {0, 1}* and, when x, y, and z are viewed 

as binary numbers, xy = z}

But there are languages that are in SD but not in D:

● H = {<M, w> : M halts on input w}

D and SD

1. D is a subset of SD.  In other words, every decidable 
language is also semidecidable.

2. There exists at least one language (namely, H) that is 
in SD-D, the  donut in the picture.
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Subset Relationships between D and SD

1. There exists at least one SD 
language that is not in D. 
Namely H.

2. Every language that is in D is also in SD:  If L is in D, 
then there is a Turing machine M that decides it (by 
definition of D). M also semidecides L.

3. What about languages that are not in SD?  Is the gray 
area of the figure empty?

There are Languages That Are 
Not in SD

Theorem: There are languages that are not in SD.

Proof: Assume any nonempty alphabet .  

Lemma: There is a countably infinite number of SD languages 
over .

Lemma: There is an uncountably infinite number of languages 
over .  

So there are more languages than there are languages in SD.  
Thus there must exist at least one language that is in SD.
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Closure of D Under Complement

Theorem: The set D is closed under complement.

Proof: (by construction) If L is in D, then there is a 
deterministic Turing machine M that decides it.

M:

y n

From M, we construct M to decide L:

Closure of D Under Complement
Theorem: The set D is closed under complement.

Proof: (by construction) 

M: M':

This works because, by definition, M is:
● deterministic
● complete

Since M' decides L, L is in D.

ny yn
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SD is Not Closed Under Complement

Can we use the same technique?

M: M':

y

Suppose we had:

ML: ML:
Accepts if input is in L.        Accepts if input not in L.

Then we could decide L.  How?

So every language in SD would also be in D.

But we know that there is at least one language (H) that is in 
SD but not in D.  Contradiction.

SD is Not Closed Under Complement
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D and SD Languages

Theorem: A language is in D iff both it and its complement 
are in SD.

Proof:

⇒
● L in D implies L and L are in SD:  
● L is in SD because D  SD.
● D is closed under complement
● So L is also in D and thus in SD.

⇐
● L and L are in SD implies L is in D: 
● M1 semidecides L.
● M2 semidecides L.
● To decide L: 
● Run M1 and M2 in parallel (dovetail) on w.
● Exactly one of them will eventually accept.

Theorem: The language H = 

{<M, w> : TM M does not halt on input string w} 

is not in SD.  

Proof: 
● H is in SD.  
● If H were also in SD then H would be in D.  
● But H is not in D.  
● So H is not in SD. 

A Particular Language that is Not in SD
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To enumerate a set means "list its elements, in such a 
way that for any element, it appears in the list within a 
finite amount of time."

We say that Turing machine M enumerates the language 
L iff, for some fixed state p of M:

L = {w : (s, ) |-M* (p, w)}.

"p" stands for "print"

A language is Turing-enumerable iff there is a Turing 
machine that enumerates it.

Another term that is often used is recursively 
enumerable.

Enumeration

Let P be a Turing machine that enters state p and then 
halts:

A Printing Subroutine
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Let L = a*.

Example of Enumeration

Theorem: A language is SD iff it is Turing-enumerable.

Proof that Turing-enumerable implies SD: Let M be the 
Turing machine that enumerates L.  We convert M to a 
machine M' that semidecides L:

1. Save input w on another tape.
2. Begin enumerating L.  Each time an element of L is 

enumerated, compare it to w.  If they match, accept.

SD and Turing Enumerable
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Proof that SD implies Turing-enumerable:

If L  * is in SD, then there is a Turing machine M that semidecides L.

A procedure E to enumerate all elements of L:

1. Enumerate all w  * lexicographically.
e.g., , a, b, aa, ab, ba, bb, …

2. As each is enumerated, use M to check it. 

w3, w2, w1 L? yes          w
E

M

M'

Problem?

The Other Way

Dovetailing
We have an infinite number of calculations C1, C2, C3, ..., each of 
which may or may not halt.  We want to enumerate the results of those 
that halt.
A naive approach would be to run C1, then C2, ...
The problem with this is that C1 may not halt, so we may never get to 
try C2.

Solution: Run them in this order.
Step 1 of C1
Step 2 of C1
Step 1 of C2
Step 3 of C1
Step 2 of C2
Step 1 of C3
Step 4 of C1
Step 3 of C2
Step 2 of C3
Step 1 of C4
...
Then if Ci halts after j steps, we are guaranteed to eventually get to 
that step.
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Proof that SD implies Turing-enumerable:

If L  * is in SD,  then there is a Turing machine M that 
semidecides L.

A procedure to enumerate all elements of L:

1. Enumerate all w  * lexicographically.
2. As each string wi is enumerated:

1. Start up a copy of M with wi as its input.
2. Execute one step of each Mi initiated so far, 

excluding those M's that have already halted.
3. Whenever an Mi accepts, output wi.

The Other Way

M lexicographically enumerates L iff M enumerates the 
elements of L in lexicographic order.  

A language L is lexicographically Turing-enumerable iff 
there is a Turing machine that lexicographically 
enumerates it.

Example:  AnBnCn = {anbncn : n  0}

Lexicographic enumeration:

How would a TM do this.

Lexicographic Enumeration
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Theorem: A language is in D iff it is lexicographically Turing-
enumerable.

Proof that D implies lexicographically TE: Let M be a Turing 
machine that decides L.  Then M' lexicographically 
generates the strings in * and tests each using M.  It 
outputs those that are accepted by M.  Thus M'
lexicographically enumerates L.

Lexicographically Enumerable = D

Proof that lexicographically Turing Enumerable implies D:
Let M be a Turing machine that lexicographically enumerates 
L.  Then, on input w, M' starts up M and waits until:

● M generates w (so M' accepts), 
● M generates a string that comes after w (so M' rejects), or 
● M halts (so M' rejects).  

Thus M' decides L.

Proof, Continued
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IN SD OUT
Semideciding TM H  Reduction   
Enumerable
Unrestricted grammar

D
Deciding TM AnBnCn Diagonalize
Lexic. enum Reduction
L and L in SD 

Context-Free
CF grammar AnBn Pumping
PDA Closure
Closure

Regular
Regular Expression                  a*b* Pumping
FSM Closure

Language Summary


