
1

MA/CSSE 474
Theory of Computation

Halting Problem
Decidable and Semidecidable

Does This Program Always Halt?
times3(x: positive integer) =

while x  1 do:
if x is even then x = x/2.
else x = 3x + 1

times3(25) …

max = 100000
maxCount = 0
for i in range(1, max+1):

current = i
count = 0

while current != 1:
count += 1
if current % 2 == 0:

current /= 2
else:

current = 3 * current + 1

print "%7d %7d" % (i, count)
if count > maxCount:

maxCount = count

print "maxCount = ", maxCount

Lothar Collatz, 1937, conjectured
that times3 halts for all positive
integers n. Still an open problem.

Paul Erdős: "Mathematics is not
yet ready for such confusing,
troubling, and hard problems."

http://mathworld.wolfram.com/Collatz
Problem.html

2

Collatz function example
27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322,
161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206,
103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790,
395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167,
502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619,
4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102,
2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732,
866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184,
92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8,
4, 2, 1

The Language H

Theorem: The language:

H = {<M, w> : TM M halts on input string w}

● is semidecidable, but
● is not decidable.

Proof soon! via two lemmas ..

We know that we can decide the halting question for
specific simple TMs.

Or can we … ?

3

H is Semidecidable

Lemma: The language:

H = {<M, w> : TM M halts on input string w}

is semidecidable.

Proof: The TM M'H semidecides H:

M'H(<M, w>) =
1. Run M on w.
2. Accept.

M'H accepts <M, w> if and only if
M halts on w.

Thus M'H semidecides H.

Details of step 1:
• Write <M,w> on U's first tape.
• Run U U is the Universal

Turing Machine

What do we mean
by "halts on w"?

H is Not Decidable

Lemma: The language:

H = {<M, w> : TM M halts on input string w}

is not decidable.

Outline of proof:
By contradiction…

Specification of halts function.
Trouble [in (Wabash) River City)]
halts(<Trouble, Trouble>) - what happens?

4

The Undecidability of the Halting Problem

Lemma: The language:

H = {<M, w> : TM M halts on input string w}

is not decidable.

Proof (by contradiction): Assume that H is decidable.
Then some TM MH would decide it. MH would implement
the specification:

halts(<M, w>) =
if <M> is a Turing machine description

and M halts on w
then accept.
else reject.

Trouble [in (Wabash) River City)]
Trouble(x: string) =

if halts(<x, x>) then loop forever, else halt.

If there is an MH that computes the function halts, Trouble exists:

Consider halts(<Trouble, Trouble>):
● If MH reports that Trouble(<Trouble>) halts, Trouble loops.
● But if MH reports that Trouble(<Trouble>) does not halt, then

Trouble halts.

C# is the machine from
several class sessions
ago that makes a copy
of the non-blank
characters on the tape.

Note that it is important
to this proof that Trouble
be constructible from MH

1 means yes
0 means no

5

● Lexicographically enumerate Turing machine encodings and input
strings.

● Let 1 mean halting, blank mean non halting.

Viewing the Halting Problem as Diagonalization

i1 i2 i3 … <Trouble> …

<machine1> 1

machine2> 1

machine3> 1

… 1

<Trouble> 1 1

… 1 1 1

… 1

If MH exists and decides membership in H, it must be
able to correctly fill in any cell in this table.

What about the shaded square?

Decidable and Semidecidable
Languages

6

If H were in D, then SD would equal D

Theorem: If H were in D then every SD language would be in D.

Proof: Let L be any SD language. There exists a TM ML that
semidecides it. The following machine M' decides whether w is in
L(ML):

Recall: H = {<M, w> : TM M halts on input string w}
We know that HSD. If H were also in D, then there
would exist a TM MH that decides it.

M'(w: string) =
1. Run MH on <ML, w>. (MH will always halt)
2. If MH accepts (i.e., ML will halt on input w), then:

2.1. Run ML on w.
2.2. If it accepts, accept.
2.3 Else reject.

3. Else reject.

Every CF Language is in D

Theorem: The set of context-free languages is a proper
subset of D.

Proof:
● Every context-free language is decidable, so the context-

free languages are a subset of D.
● There is at least one language, AnBnCn, that is decidable

but not context-free.

So the context-free languages are a proper subset of D.

7

Decidable and Semidecidable Languages
Almost every obvious language that is in SD is also in D:

● AnBnCn = {anbncn, n ≥ 0}
● {wcw, w  {a, b}*}
● {ww, w  {a, b}*}
● {xy=z: x,y,z  {0, 1}* and, when x, y, and z are viewed

as binary numbers, xy = z}

But there are languages that are in SD but not in D:

● H = {<M, w> : M halts on input w}

D and SD

1. D is a subset of SD. In other words, every decidable
language is also semidecidable.

2. There exists at least one language (namely, H) that is
in SD-D, the donut in the picture.

8

Subset Relationships between D and SD

1. There exists at least one SD
language that is not in D.
Namely H.

2. Every language that is in D is also in SD: If L is in D,
then there is a Turing machine M that decides it (by
definition of D). M also semidecides L.

3. What about languages that are not in SD? Is the gray
area of the figure empty?

There are Languages That Are
Not in SD

Theorem: There are languages that are not in SD.

Proof: Assume any nonempty alphabet .

Lemma: There is a countably infinite number of SD languages
over .

Lemma: There is an uncountably infinite number of languages
over .

So there are more languages than there are languages in SD.
Thus there must exist at least one language that is in SD.

9

Closure of D Under Complement

Theorem: The set D is closed under complement.

Proof: (by construction) If L is in D, then there is a
deterministic Turing machine M that decides it.

M:

y n

From M, we construct M to decide L:

Closure of D Under Complement
Theorem: The set D is closed under complement.

Proof: (by construction)

M: M':

This works because, by definition, M is:
● deterministic
● complete

Since M' decides L, L is in D.

ny yn

10

SD is Not Closed Under Complement

Can we use the same technique?

M: M':

y

Suppose we had:

ML: ML:
Accepts if input is in L. Accepts if input not in L.

Then we could decide L. How?

So every language in SD would also be in D.

But we know that there is at least one language (H) that is in
SD but not in D. Contradiction.

SD is Not Closed Under Complement

11

D and SD Languages

Theorem: A language is in D iff both it and its complement
are in SD.

Proof:

⇒
● L in D implies L and L are in SD:
● L is in SD because D  SD.
● D is closed under complement
● So L is also in D and thus in SD.

⇐
● L and L are in SD implies L is in D:
● M1 semidecides L.
● M2 semidecides L.
● To decide L:
● Run M1 and M2 in parallel (dovetail) on w.
● Exactly one of them will eventually accept.

Theorem: The language H =

{<M, w> : TM M does not halt on input string w}

is not in SD.

Proof:
● H is in SD.
● If H were also in SD then H would be in D.
● But H is not in D.
● So H is not in SD.

A Particular Language that is Not in SD

12

To enumerate a set means "list its elements, in such a
way that for any element, it appears in the list within a
finite amount of time."

We say that Turing machine M enumerates the language
L iff, for some fixed state p of M:

L = {w : (s, ) |-M* (p, w)}.

"p" stands for "print"

A language is Turing-enumerable iff there is a Turing
machine that enumerates it.

Another term that is often used is recursively
enumerable.

Enumeration

Let P be a Turing machine that enters state p and then
halts:

A Printing Subroutine

13

Let L = a*.

Example of Enumeration

Theorem: A language is SD iff it is Turing-enumerable.

Proof that Turing-enumerable implies SD: Let M be the
Turing machine that enumerates L. We convert M to a
machine M' that semidecides L:

1. Save input w on another tape.
2. Begin enumerating L. Each time an element of L is

enumerated, compare it to w. If they match, accept.

SD and Turing Enumerable

14

Proof that SD implies Turing-enumerable:

If L  * is in SD, then there is a Turing machine M that semidecides L.

A procedure E to enumerate all elements of L:

1. Enumerate all w  * lexicographically.
e.g., , a, b, aa, ab, ba, bb, …

2. As each is enumerated, use M to check it.

w3, w2, w1 L? yes w
E

M

M'

Problem?

The Other Way

Dovetailing
We have an infinite number of calculations C1, C2, C3, ..., each of
which may or may not halt. We want to enumerate the results of those
that halt.
A naive approach would be to run C1, then C2, ...
The problem with this is that C1 may not halt, so we may never get to
try C2.

Solution: Run them in this order.
Step 1 of C1
Step 2 of C1
Step 1 of C2
Step 3 of C1
Step 2 of C2
Step 1 of C3
Step 4 of C1
Step 3 of C2
Step 2 of C3
Step 1 of C4
...
Then if Ci halts after j steps, we are guaranteed to eventually get to
that step.

15

Proof that SD implies Turing-enumerable:

If L  * is in SD, then there is a Turing machine M that
semidecides L.

A procedure to enumerate all elements of L:

1. Enumerate all w  * lexicographically.
2. As each string wi is enumerated:

1. Start up a copy of M with wi as its input.
2. Execute one step of each Mi initiated so far,

excluding those M's that have already halted.
3. Whenever an Mi accepts, output wi.

The Other Way

M lexicographically enumerates L iff M enumerates the
elements of L in lexicographic order.

A language L is lexicographically Turing-enumerable iff
there is a Turing machine that lexicographically
enumerates it.

Example: AnBnCn = {anbncn : n  0}

Lexicographic enumeration:

How would a TM do this.

Lexicographic Enumeration

16

Theorem: A language is in D iff it is lexicographically Turing-
enumerable.

Proof that D implies lexicographically TE: Let M be a Turing
machine that decides L. Then M' lexicographically
generates the strings in * and tests each using M. It
outputs those that are accepted by M. Thus M'
lexicographically enumerates L.

Lexicographically Enumerable = D

Proof that lexicographically Turing Enumerable implies D:
Let M be a Turing machine that lexicographically enumerates
L. Then, on input w, M' starts up M and waits until:

● M generates w (so M' accepts),
● M generates a string that comes after w (so M' rejects), or
● M halts (so M' rejects).

Thus M' decides L.

Proof, Continued

17

IN SD OUT
Semideciding TM H Reduction
Enumerable
Unrestricted grammar

D
Deciding TM AnBnCn Diagonalize
Lexic. enum Reduction
L and L in SD

Context-Free
CF grammar AnBn Pumping
PDA Closure
Closure

Regular
Regular Expression a*b* Pumping
FSM Closure

Language Summary

