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UNIVERSAL TURING MACHINE
CHURCH-TURING THESIS
THE HALTING PROBLEM

Variations:

Multiple tracks

Multiple tapes

Non-deterministic

Your Questions?
• Previous 

class days' 
material

• Reading 
Assignments

• HW 14b 
problems

• Exam 3
• Anything 

else
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An Encoding Example
Consider M = ( { s, q, h }, { a, b, c }, { � , a, b, c }, , s, { h } ):

<M> = (q00,a00,q01,a00,), (q00,a01,q00,a10,), 
(q00,a10,q01,a01,), (q00,a11,q01,a10,), 
(q01,a00,q00,a01,),  (q01,a01,q01,a10,), 
(q01,a10,q01,a11,), (q01,a11,h10,a01,)

state symbol 

s � (q, � , )

s a (s, b, )

s b (q, a,  )

s c (q, b, )

q � (s, a,)

q a (q, b, )

q b (q, b, )

q c (h, a, )

state/symbol representation

s q00

q q01

h h10

� a00

a a01

b a10

c a11

Decision 
problem:  
Given a string 
w, is there a 
TM M such 
that w=<M> ? 

Is this 
problem 
decidable?

Encoding Multiple Inputs

Let: 

<x1, x2, …xn> 

represent a single string that encodes the sequence of 
individual values:

x1, x2, …xn.
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On input <M, w>, U must:

● Halt iff M halts on w.

● If M is a deciding or semideciding machine, then:
● If M accepts, accept.
● If M rejects, reject.

● If M computes a function, then U(<M, w>) must equal M(w).

The Specification of the Universal TM

U will use 3 tapes:

● Tape 1: M’s tape.  

● Tape 2: <M>, the “program” that U is running.

● Tape 3: M’s state.

How U Works
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The Universal TM

Initialization of U:
1. Copy <M> onto tape 2.
2. Look at <M>, figure out what i is, and write the encoding of state 

s on tape 3.

After initialization:

The Operation of U

Simulate the steps of M :
1. Until M would halt do:

1.1 Scan tape 2 for a quintuple that matches the current state, 
input pair. 

1.2 Perform the associated action, by changing tapes 1 and 3.  If 
necessary, extend the tape.

1.3 If no matching quintuple found, halt.  Else loop.
2. Report the same result M would report.

How long does U take?
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If A Universal Machine is Such a Good Idea …

Could we define a Universal Finite State Machine?

Such a FSM would accept the language:

L = {<F, w> : F is a FSM, and w  L(F) }

Enumerating Turing Machines

Theorem: There exists an infinite lexicographic 
enumeration of:

(a) All syntactically valid TMs.

(b) All syntactically valid TMs with specific input 
alphabet .

(c) All syntactically valid TMs with specific input 
alphabet  and specific tape alphabet .       
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Enumerating Turing Machines

Proof: Fix  = {(, ), a, q, y, n, 0, 1, comma, , }, 
ordered as listed.  Then:
1. Lexicographically enumerate the strings in *.
2. As each string s is generated, check to see whether

it is a syntactically valid Turing machine description.
If it is, output it.

To restrict the enumeration to symbols in sets  and , 
check, in step 2, that only alphabets of the appropriate 
sizes are allowed.

We can now talk about the ith Turing machine. 

Another Benefit of Encoding
Benefit of defining a way to encode any Turing machine M:  

● We can talk about operations on programs (TMs).  



5/8/2018

7

Example of a Transforming TM T:

Input: a TM M1 that reads its input tape and performs 
some operation P on it.  

Output: a TM M2 that performs P on an empty input tape.

The machine M2 (output of T) empties its tape, then runs M1. 

The Church-Turing Thesis
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Are We Done?

In this course: FSM  PDA  Turing machine

Is this the end of the line?

There are still problems that we cannot solve with a TM:

● There is a countably infinite number of Turing machines 
since we can lexicographically enumerate all the strings 
that correspond to syntactically legal Turing machines.

● There is an uncountably infinite number of languages over 
any nonempty alphabet.  

● So there are more languages than there are Turing 
machines.

What Can Algorithms Do?

1. Can we come up with a system of axioms that 
makes all true statements be theorems  (I.e. 
provable from the axioms)? 

The set of axioms can be infinite, but it must be decidable

2. Can we always decide whether, given a set of 
axioms, a statement is a theorem or not?

In the early 20th century, it was widely believed that the 
answer to both questions was "yes."
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Gödel’s Incompleteness Theorem

Kurt Gödel showed, in the proof of his Incompleteness 
Theorem [Gödel 1931], that the answer to question 1 is 
no.  In particular, he showed that there exists no 
decidable axiomaitization of Peano arithmetic  that is both 
consistent and complete. 

Complete: All true statements in the language of the 
theory are theorems

The Entscheidungsproblem

From Wikipedia: The Entscheidungsproblem ("decision 
problem", David Hilbert 1928) asks for an algorithm that will 
take as input a description of a formal language and a 
mathematical statement in the language, and produce as 
output either "True" or "False" according to whether the 
statement is true or false. The algorithm need not justify its 
answer, nor provide a proof, so long as it is always correct.

Three equivalent formulations:
1. Does there exist an algorithm to decide, given an arbitrary 

sentence w in first order logic, whether w is valid?
2. Given a set of axioms A and a sentence w, does there 

exist an algorithm to decide whether w is entailed by A?
3. Given a set of axioms, A, and a sentence, w, does there 

exist an algorithm to decide whether w can be proved from 
A?
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The Entscheidungsproblem

To answer the question, in any of these forms, requires 
formalizing the definition of an algorithm:

● Turing: Turing machines.

● Church: lambda calculus.  

Turing proved that Turing machines and the lambda calculus 
are equivalent.

Church's Thesis
(Church-Turing Thesis)

All formalisms powerful enough to describe everything 
we think of as a computational algorithm are equivalent. 

This isn’t a formal statement, so we can’t prove it.  But 
many different computational models have been 
proposed and they all turn out to be equivalent.



5/8/2018

11

Examples of equivalent formalisms: 

● Modern computers (with unbounded memory)

● Lambda calculus

● Partial recursive functions

● Tag systems (FSM plus FIFO queue)

● Unrestricted grammars:

aSa B

● Post production systems

● Markov algorithms

● Conway’s Game of Life

● One dimensional cellular automata

● DNA-based computing 

● Lindenmayer systems

The Church-Turing Thesis

The Lambda Calculus
The successor function:

(λ x. x + 1) 3 = 4

Addition:    (λ x. λ y. x + y) 3 4

This expression is evaluated by binding 3 to x to create the 
new function (λ y. 3 + y), which is applied to 4 to return 7.

In the pure lambda calculus, there is no built in number data 
type.  All expressions are functions.  But the natural 
numbers can be defined as lambda calculus functions.  So 
the lambda calculus can effectively describe numeric 
functions.



5/8/2018

12

The Lambda Calculus

> (define Y
(lambda (f)
((lambda (x) (f (lambda (y) ((x x) y))))
(lambda (x) (f (lambda (y) ((x x) y)))))))

> (define H
(lambda (g)
(lambda (n)
(if (zero? n)

1
(* n (g (- n 1)))))))

> ((Y H) 5)
120
>

Λ-Calculus in Scheme

> (((lambda (f)
((lambda (x) (f (lambda (y) ((x x) y))))
(lambda (x) (f (lambda (y) ((x x) y))))))

(lambda (g)
(lambda (n)
(if (zero? n)

1
(* n (g (- n 1)))))))

5)
120

The Applicative Y Combinator
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Tag Systems

A tag system (or a Post machine) is an FSM augmented 
with a FIFO queue.

Simple for WW:
Not so simple for PalEven

The Power of Tag Systems

Tag systems are equivalent in power to Turing machines 
because the TM’s tape can be simulated with the FIFO 
queue.

Suppose that we put abcde into the queue:

a b c d e

To read the queue, we must remove the a first.

But suppose we want to remove e first:
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The Power of Tag Systems

Tag systems are equivalent in power to Turing machines 
because the TM’s tape can be simulated with the FIFO 
queue.

Suppose that we push abcde onto the queue:

a b c d e

To read the queue, we must remove the a first.

But suppose we want to remove e first:

Treat the queue as a loop.

The Game of Life

At each step of the computation, the value for each cell is determined 
by computing the number of neighbors (up to a max of 8) it 
currently has, according to the following rules:
● A dead cell with exactly three live neighbors becomes a live cell   

(birth). 
● A live cell with two or three live neighbors stays alive (survival).
● In all other cases, a cell dies or remains dead (overcrowding or 

loneliness).

We’ll say that a game halts iff it reaches some stable configuration.
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Elementary Cellular Automata

Wolfram’s Rule 110 is a universal 
computer,  if you can figure out how to encode the 
program and the input in the initial configuration:

For some fascinating pictures, look up Rule 110.  
Conjectured in 1985 to be Turing complete, proved in 2000 by Matthew Cook.
Also: http://en.wikipedia.org/wiki/A_New_Kind_of_Science

Background for The Halting 
Problem
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Key ideas so far 
• Let U be 

{(, ), a, q, y, n, h,  0, 1, comma, , }, 
ordered as listed

• Any TM M may be encoded as a string 
<M> over alphabet U

• We can design a TM T to take as input 
<M1>, an encoding of TM M1, and produce 
as output <M2>, an encoding of TM M2

Key ideas so far 2
• We can lexicographically enumerate:

– All TM encodings

– All TM encodings with a given input alphabet

– All TM encodings with a given input alphabet 
and a given tape alphabet

• For any TM M and any string w over M's 
input alphabet, we can encode the pair 
M, w as a single string <M, w>
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Key ideas so far 3
• There is a universal TM U whose input 

alphabet is U.

• If U is started with input <M,w>, it simulates 
the behavior of M, started with input w:
– If M does not halt, U does not halt

– If M halts and accepts, so does U

– If M halts and rejects, so does U

– If M is a "function computing" TM, then
U leaves the same string on the tape that M would 
leave, so that U(<M, w>) = M(w)

• Church-Turing Thesis (brief version):
"Computable" is equivalent to "computable by a 
Turing machine"

Recap: D and SD

● A TM M with input alphabet  decides a language L  * iff, 
for any string w  *,

● if w  L then M accepts w, and
● if w  L then M rejects w.

A language L is decidable (an element of D) iff there is a 
Turing machine M that decides it.  

● A TM M with input alphabet  semidecides L iff for any string 
w  *,

● if w  L then M accepts w
● if w  L then M does not accept w.  

M may reject or loop.

A language L is semidecidable (an element of SD) iff there is a 
Turing machine that semidecides it. 
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Defining the Universe

What is the complement of:

•AnBn = {anbn : n  0}   ?

Depends on the universe: 
That universe may be {a, b}*, or even {a, b, c, d}*, or 
could be {akbm}

•{<M, w> : TM M halts on input string w}

Universe may be U*, or could be 

{<M, w> : M is a TM and w is a string over M's input alphabet}

Defining the Universe
L1 = {<M, w> : TM M halts on input string w}.
L2 = {<M> : M doesn't halt on any input string}.
L3 = {<Ma, Mb> : Ma and Mb halt on the same strings}.

For a string w to be in L1, it must:
● be syntactically well-formed.
● encode a machine M and a string w such that M halts 

when started on w.

Define the universe from which we are drawing strings to 
contain only those strings that meet the syntactic 
requirements of the language definition. 

This convention has no impact on the decidability of any of 
these languages since the set of all syntactically valid strings 
is clearly in D.



5/8/2018

19

Our earlier definition:

L1 =  {x: x is not a syntactically well formed <M, w> pair}


{<M, w> : TM M does not halt on input string w}.

We will use a different definition:

Define the complement of any language L whose member 
strings include at least one Turing machine description to be 
with respect to a universe of strings that are of the same 
syntactic form as L.  

Now we have:

L1 = {<M, w> : TM M does not halt on input string w}.

A Different Definition of Complement

Does This Program Always Halt?
times3(x: positive integer) = 

while x  1 do:
if x is even then x = x/2.
else x = 3x + 1

times3(25) …

max = 100000
maxCount = 0
for i in range(1, max+1):

current = i
count = 0

while current != 1:
count += 1
if current % 2 == 0:

current /= 2
else:

current = 3 * current + 1

print "%7d %7d" % (i, count)
if count > maxCount:

maxCount = count

print "maxCount = ", maxCount

Lothar Collatz, 1937, conjectured 
that times3 halts for all positive 
integers n.  Still an open problem.

Paul Erdős: "Mathematics is not 
yet ready for such confusing, 
troubling, and hard problems." 

http://mathworld.wolfram.com/Collatz
Problem.html
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Collatz function example
27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 
161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 
103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 
395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 
502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 
4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 
2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 
866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 
92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 
4, 2, 1

The Halting Problem

(Expressed as The Halting Language)
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The Language H

Theorem:  The language: 

H = {<M, w> : TM M halts on input string w} 

● is semidecidable, but
● is not decidable.

Proof soon!  via two lemmas ..

We know that we can decide the halting question for 
specific simple TMs.

Or can we … ?

H is Semidecidable

Lemma: The language:

H = {<M, w> : TM M halts on input string w}

is semidecidable.  

Proof: The TM M'H semidecides H:

M'H(<M, w>) = 
1. Use U to run M on w 
2. Accept.

M'H accepts <M, w> iff M halts on w.  
Thus M'H semidecides H. 
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H is Not Decidable

Lemma: The language:

H = {<M, w> : TM M halts on input string w} 

is not decidable.

Contradiction
Specification of halts
Trouble [in (Wabash) River City)]
halts(<Trouble, Trouble>)  - what happens?


