
4/30/2018

1

TM Macro Language

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW 14 problems
• Exam 3
• Anything else

4/30/2018

2

TMs are complicated

• … and very low-level!

• We need higher-level "abbreviations".
– Macros

A Macro language for Turing Machines

(1) Define some basic machines

● Symbol writing machines

For each x  , define Mx, written as just x, to be a machine
that writes x. Read-write head ends up in original position.

● Head moving machines

R: for each x  , (s, x) = (h, x, )
L: for each x  , (s, x) = (h, x, )

● Machines that simply halt:
h, which simply halts (don't care whether it accepts).
n, which halts and rejects.
y, which halts and accepts.

You need to learn this simple
language. I will use it and I expect
you to use it on HW and tests (for
exams I'll give you a handout with
the details).

4/30/2018

3

Machines to:

● Check the tape and branch based on what character
we see, and

● Combine the basic machines to form larger ones.

To do this, we need two forms:

● M1 M2

● M1 <condition> M2

Checking Inputs and Combining Machines

Turing Machines Macros Cont'd

Example:

>M1 a M2

b

M3

● Start in the start state of M1.
● Compute until M1 reaches one of its halt states, which are not

halt states in the combined machine.
● Examine the tape and take the appropriate transition.
● Start in the start state of the next machine, etc.
● Halt if any component reaches a halt state and has no place

to go.
● If any component fails to halt, then the entire machine may fail

to halt.

4/30/2018

4

a

M1 M2 becomes M1 a, b M2

b

M1 all elems of  M2 becomes M1 M2

or
M1M2

Variables

M1 all elems of  M2 becomes M1 x  a M2

except a and x takes on the value of
the current square

M1 a, b M2 becomes M1 x  a, b M2

and x takes on the value of
the current square

M1 x = y M2

if x = y then take the transition

e.g., > x  � Rx if the current square is not blank, go right and copy it.

More macros

Blank/Non-blank Search Machines
Find the first blank square to
the right of the current square.

Find the first blank square to
the left of the current square.

Find the first nonblank square to
the right of the current square.

Find the first nonblank square to
the left of the current square

R�

L�

R�

L�

4/30/2018

5

More Search Machines
La Find the first occurrence of a to

the left of the current square.

Ra,b Find the first occurrence of a or b
to the right of the current square.

La,b a M1 Find the first occurrence of a or b
to the left of the current square,

b then go to M1 if the detected
character is a; go to M2 if the

M2 detected character is b.

Lxa,b Find the first occurrence of a or b
to the left of the current square
and set x to the value found.

Lxa,bRx Find the first occurrence of a or b
to the left of the current square,
set x to the value found, move one
square to the right, and write x (a or b).

An Example

Input: � w w  {1}*
Output: � w3

Example: � 111� � � � � � � � � � � � � �

4/30/2018

6

What does this machine do?

Exercise

Initial input on the tape is an integer
written in binary, most significant bit first
(110 represents 6).

Design a TM that replaces the binary
representation of n by the binary
representation of n+1.

4/30/2018

7

Two Flavors of TMs

1. Recognize a language

2. Compute a function

Turing Machines as Language Recognizers

Let M = (K, , , , s, {y, n}).

● M accepts a string w iff (s, � w) |-M* (y, w) for some
string w (that includes an underlined character).

● M rejects a string w iff (s, � w) |-M* (n, w) for some
string w.

M decides a language L  * iff:
For any string w  * it is true that:

if w  L then M accepts w, and
if w  L then M rejects w.

A language L is decidable iff there is a Turing machine M
that decides it. In this case, we will say that L is in D.

4/30/2018

8

A Deciding Example
AnBnCn = {anbncn : n  0}

Example: � aabbcc� � � � � � � � �

Example: � aaccb� � � � � � � � �

Semideciding a Language

Let M be the input alphabet to a TM M. Let L  M*.

M semidecides L iff, for any string w  M*:

● w  L  M accepts w
● w  L  M does not accept w. M may either:

reject or
fail to halt.

A language L is semidecidable iff there is a Turing
machine that semidecides it. We define the set SD to
be the set of all semidecidable languages.

4/30/2018

9

Example of Semideciding
Let L = b*a(a  b)*

We can build M to semidecide L:

1. Loop
1.1 Move one square to the right. If the character under

the read head is an a, halt and accept.

In our macro language, M is:

Example of Deciding the same Language

L = b*a(a  b)*. We can also decide L:

Loop:
1.1 Move one square to the right.
1.2 If the character under the read/write head is

an a, halt and accept.
1.3 If it is � , halt and reject.

In our macro language, M is:

4/30/2018

10

TM that Computes a Function

Let M = (K, , , , s, {h}).

Define M(w) = z iff (s, � w) |-M* (h, � z).

Let    be M’s output alphabet.
Let f be any function from * to *.

M computes f iff, for all w  *:

● If w is an input on which f is defined: M(w) = f(w).

● Otherwise M(w) does not halt.

A function f is recursive or computable iff there is a Turing
machine M that computes it and that always halts.

Note that this is different than our common use of recursive.

Notice that the
TM's function
computes with
strings (* to
*), not directly
with numbers.

Example of Computing a Function
Let  = {a, b}. Let f(w) = ww.

Input: � w� � � � � � Output: � ww�

Define the copy machine C:
� w� � � � � �  � w� w�

Also use the S machine:
� u� w�  � uw�

Then the machine to compute f is just >C S L�

More details next slide

4/30/2018

11

Example of Computing a Function
Let  = {a, b}. Let f(w) = ww.

Input: � w� � � � � � Output: � ww�

Define the copy machine C:
� w� � � � � �  � w� w�

Then use the S machine:
� u� w�  � uw�

Then the machine to compute f is just >C S L�

Computing Numeric Functions
For any positive integer k, valuek(n) returns the nonnegative

integer that is encoded, base k, by the string n.

For example:

● value2(101) = 5.

● value8(101) = 65.

TM M computes a function f from m to iff, for some k:

valuek(M(n1;n2;…nm)) = f(valuek(n1), … valuek(nm))

Note that the semicolon serves to
separate the representations of the
arguments

4/30/2018

12

Why Are We Working with Our Hands
Tied Behind Our Backs?

Turing machines Are more powerful than any of
the other formalisms we have
studied so far.


Turing machines Are a lot harder to work with than

all the real computers that are
available to us.


Why bother?

The very simplicity that makes it hard to program Turing machines
makes it possible to reason formally about what they can do. If we
can, once, show that everything a real computer can do can be
done (albeit clumsily) on a Turing machine, then we have a way to
reason about what real computers can do.

