
4/26/2018

1

CFL Hierarchy
CFL Decision Problems

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW 12 or 13 problems
• Anything else

I have included some
slides online that we will
not have time to do in
class, but may be helpful
to you anyway.

4/26/2018

2

• SURPRISINGLY, it is Context-free! HW 13. Here is
the beginning of a proof:

• We can build a PDA M to accept L. All M has to do
is to find one way in which x and y differ.

• M starts by pushing a bottom of stack marker # onto
the stack.

• Then it nondeterministically chooses to go to state 1
or 2.

{xcy : x, y  {0, 1}* and x  y}

● In HW12, we see that acceptance by "accepting state
only" is equivalent to acceptance by empty stack and
accepting state.
Equivalent In this sense: Given a language L, there is

a PDA that accepts L by accepting state and empty
stack iff there is a PDA that accepts L by accepting
state only.

● FSM plus two stacks?

● FSM plus FIFO queue (instead of stack)?

PDA Variations?

4/26/2018

3

Closure Theorems for Context-Free Languages

The context-free languages are closed under:

● Union

● Concatenation

● Kleene star

● Reverse

Let G1 = (V1, 1, R1, S1), and
G2 = (V2, 2, R2, S2)

generate languages L1 and L2

Formal details are on next 4 slides;
we will do them informally instead.

Closure Under Union

Let G1 = (V1, 1, R1, S1), and
G2 = (V2, 2, R2, S2).

Assume that G1 and G2 have disjoint sets of nonterminals,
not including S.

Let L = L(G1)  L(G2).

We can show that L is CF by exhibiting a CFG for
it:

G = (V1  V2  {S}, 1  2,
R1  R2  {S  S1, S  S2},
S)

4/26/2018

4

Closure Under Concatenation
Let G1 = (V1, 1, R1, S1), and

G2 = (V2, 2, R2, S2).

Assume that G1 and G2 have disjoint sets of nonterminals,
not including S.

Let L = L(G1)L(G2).

We can show that L is CF by exhibiting a CFG for it:

G = (V1  V2  {S}, 1  2,
R1  R2  {S  S1 S2},
S)

Closure Under Kleene Star
Let G = (V, , R, S1).

Assume that G does not have the nonterminal S.

Let L = L(G)*.

We can show that L is CF by exhibiting a CFG for it:

G = (V1  {S}, 1,
R1  {S  , S  S S1},
S)

4/26/2018

5

Closure Under Reverse
LR= {w  * : w = xR for some x  L}.

Let G = (V, , R, S) be in Chomsky normal form.

Every rule in G is of the form X  BC or X  a, where X, B, and C are
elements of V -  and a  .

● X  a: L(X) = {a}. {a}R = {a}.

● X  BC: L(X) = L(B)L(C). (L(B)L(C))R = L(C)RL(B)R.

Construct, from G, a new grammar G, such that L(G) = LR:
G = (VG, G, R, SG), where R is constructed as follows:

● For every rule in G of the form X  BC, add to R the rule X  CB.

● For every rule in G of the form X  a, add to R the rule X  a.

Closure Under Intersection

The context-free languages are not closed under
intersection:

The proof is by counterexample. Let:

L1 = {anbncm: n, m  0} /* equal a’s and b’s.
L2 = {ambncn: n, m  0} /* equal b’s and c’s.

Both L1 and L2 are context-free, since there exist
straightforward context-free grammars for them.

But now consider:
L = L1  L2

= {anbncn: n  0}

Recall: Closed under union but not
closed under intersection implies
not closed under complement.
And we saw a specific example of a
CFL whose complement was not
CF.

4/26/2018

6

Closure Under Complement

L1  L2 = (L1  L2)

The context-free languages are closed under union, so if
they were closed under complement, they would be
closed under intersection (which they are not).

Alternative approach:
In a previous class, we demonstrated that the complement

of L = AnBnCn is context-free, while L itself is not
context-free,

The Intersection of a Context-Free Language
and a Regular Language is Context-Free

L = L(M1), a PDA = (K1, , 1, 1, s1, A1).
R = L(M2), a deterministic FSM = (K2, , , s2, A2).

We construct a new PDA, M3, that accepts L  R by simulating the
parallel execution of M1 and M2.

M = (K1  K2, , 1, , [s1, s2], A1  A2).

Insert into :

For each rule ((q1, a, ), (p1, )) in 1,
and each rule (q2, a, p2) in ,
 contains (([q1, q2] a, ), ([p1, p2], )).

For each rule ((q1, , ), (p1, ) in 1,
and each state q2 in K2,
 contains (([q1, q2], , ), ([p1, q2], )).

This works because: we can get away with only one stack.

I use square brackets
for ordered pairs of
states from K1  K2, to
distinguish them from
the tuples that are
part of the notations
for transitions in M1,
M2, and M.

4/26/2018

7

Theorem: The difference (L1 – L2) between a context-free
language L1 and a regular language L2 is context-free.

Proof: L1 – L2 = L1  L2.

If L2 is regular then so is L2.

If L1 is context-free, so is L1  L2.

The Difference between a Context-Free Language
and a Regular Language is Context-Free

Halting

It is possible that a PDA may
● not halt,
● never finish reading its input.

Let  = {a} and consider M =

L(M) = {a}: (1, a, ) |- (2, a, a) |- (3, , )

On any other input except a:
● M will never halt, or
● M will never finish reading its input unless its input is .

4/26/2018

8

Nondeterminism and Decisions

1. There are context-free languages for which no
deterministic PDA exists.

2. It is possible that a PDA may
● not halt,
● not ever finish reading its input.
● require time that is exponential in the length of its

input.

3. There is no PDA minimization algorithm.
It is undecidable whether a PDA is minimal.

Solutions to the Problem

● For NDFSMs:
● Convert to deterministic, or
● Simulate all paths in parallel.

● For NDPDAs:
● No general solution.
● Formal solutions usually involve changing the

grammar.
● Such as Chomsky or Greibach Normal form.

● Practical solutions:
● Preserve the structure of the grammar, but
● Only work on a subset of the CFLs.

● LL(k), LR(k) (compilers course)

4/26/2018

9

Deterministic PDAs

A PDA M is deterministic iff:

● M contains no pairs of transitions that compete with
each other, and

● Whenever M is in an accepting configuration it has
no available moves.

//

M can choose between
accepting and taking the
-transition, so it is not
deterministic.

Deterministic CFLs (very quick
overview without many details)

A language L is deterministic context-free iff L$
can be accepted by some deterministic PDA.

Why $?

Let L = a*  {anbn : n > 0}.

4/26/2018

10

An NDPDA for L

L = a*  {anbn : n > 0}.

A DPDA for L$

L = a*  {anbn : n > 0}.

4/26/2018

11

DCFL Properties (skip the details)

.

The Deterministic CF Languages are closed under complement.

The Deterministic CF Languages are not closed under
intersection or union.

Nondeterministic CFLs

Theorem: There exist CLFs that are not deterministic.

Proof: By example. Let L = {aibjck, i  j or j  k}. L is CF. If L is DCF
then so is:

L = L.
= {aibjck, i, j, k  0 and i = j = k} 

{w  {a, b, c}* : the letters are out of order}.

But then so is:

L = L  a*b*c*.
= {anbncn, n 0}.

But it isn’t. So L is CF but not DCF.

This simple fact poses a real problem for the designers of efficient
context-free parsers.

Solution: design a language that is deterministic. LL(k) or LR(k).

4/26/2018

12

The CFL Hierarchy

Context-Free Languages Over
a Single-Letter Alphabet

Theorem: Any context-free language over a single-letter
alphabet is regular.

Proof: Requires Parikh’s Theorem, which we are
skipping

4/26/2018

13

Algorithms and Decision
Procedures for

Context-Free Languages

Chapter 14

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L?

Two approaches:
● If L is context-free, then there exists some context-free

grammar G that generates it. Try derivations in G and see
whether any of them generates w.

Problem (later slide):

● If L is context-free, then there exists some PDA M that
accepts it. Run M on w.

Problem (later slide):

4/26/2018

14

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L?

Two approaches:
● If L is context-free, then there exists some context-free

grammar G that generates it. Try derivations in G and see
whether any of them generates w.

S  S T | a Try to derive aaa

S

S T

S T

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L?

● If L is context-free, then there exists some PDA M that
accepts it. Run M on w.

Problem:

4/26/2018

15

Using a Grammar

decideCFLusingGrammar(L: CFL, w: string) =

1. If given a PDA, build G so that L(G) = L(M).

2. If w =  then if SG is nullable then accept, else reject.

3. If w   then:
3.1 Construct G in Chomsky normal form such that

L(G) = L(G) – {}.

3.2 If G' derives w, it does so in ______ steps. Try all
derivations in G' of ______ steps. If one of them
derives w, accept. Otherwise reject.

How many steps (as a function of |w|) in the
derivation of w from CNF grammar G' ?

Using a Grammar

decideCFLusingGrammar(L: CFL, w: string) =

1. If given a PDA, build G so that L(G) = L(M).

2. If w =  then if SG is nullable then accept, else reject.

3. If w   then:
3.1 Construct G in Chomsky normal form such that

L(G) = L(G) – {}.

3.2 If G' derives w, it does so in 2|w| - 1 steps. Try all
derivations in G' of 2|w| - 1 steps. If one of them
derives w, accept. Otherwise reject.

Alternative O(n3) algorithm: CKY.
a.k.a. CYK.

4/26/2018

16

Emptiness

Given a context-free language L, is L = ?

decideCFLempty(G: context-free grammar) =

1. Let G = removeunproductive(G).

2. If S is not present in G then return True
else return False.

Finiteness

Given a context-free language L, is L infinite?

decideCFLinfinite(G: context-free grammar) =

1. Lexicographically enumerate all strings in * of length
greater than bn and less than or equal to bn+1 + bn.

2. If, for any such string w, decideCFL(L, w) returns True
then return True. L is infinite.

3. If, for all such strings w, decideCFL(L, w) returns False
then return False. L is not infinite.

Why these bounds?

4/26/2018

17

Some Undecidable Questions about CFLs

● Is L = *?

● Is the complement of L context-free?

● Is L regular?

● Is L1 = L2?

● Is L1  L2?

● Is L1  L2 = ?

● Is L inherently ambiguous?

● Is G ambiguous?

Regular and CF Languages

Regular Languages Context-Free Languages

● regular exprs. ● context-free grammars
● or

● regular grammars
● = DFSMs ● = NDPDAs
● recognize ● parse
● minimize FSMs ● try to find unambiguous grammars

● try to reduce nondeterminism in PDAs
● find efficient parsers

● closed under: ● closed under:
♦ concatenation ♦ concatenation
♦ union ♦ union
♦ Kleene star ♦ Kleene star
♦ complement
♦ intersection ♦ intersection w/ reg. langs

● pumping theorem ● pumping theorem
● D = ND ● D  ND

4/26/2018

18

TURING MACHINE INTRO

Languages and Machines
SD

D

Context-Free
Languages

Regular
Languages
reg exps

FSMs

cfgs
PDAs

unrestricted grammars
Turing Machines

4/26/2018

19

SD Language

Unrestricted
Grammar

Turing
Machine

L

Accepts

Grammars, SD Languages, and Turing Machines

Turing Machines (TMs)

We want a new kind of automaton:

● powerful enough to describe all computable things,

unlike FSMs and PDAs.

● simple enough that we can reason formally about it

like FSMs and PDAs,
unlike real computers.

Goal: Be able to prove things about what can and
cannot be computed.

4/26/2018

20

Turing Machines

At each step, the machine must:

● choose its next state,
● write on the current square, and
● move left or right.

A Formal Definition

A (deterministic) Turing machine M is (K, , , , s, H):

● K is a finite set of states;
●  is the input alphabet, which does not contain � ;
●  is the tape alphabet,

which must contain � and have  as a subset.
● s  K is the initial state;
● H  K is the set of halting states;
●  is the transition function:

(K - H)   to K    {, }

non-halting  tape  state  tape  direction to move
state char char (R or L)

4/26/2018

21

Notes on the Definition

1. The input tape is infinite in both directions.

2.  is a function, not a relation. So this is a definition for
deterministic Turing machines.

3.  must be defined for all (state, tape symbol) pairs unless the
state is a halting state.

4. Turing machines do not necessarily halt (unlike FSM's and
most PDAs). Why? To halt, they must enter a halting state.
Otherwise they loop.

5. Turing machines generate output, so they can compute
functions.

An Example
M takes as input a string in the language:

{aibj, 0  j  i},

and adds b’s as required to make the number of b’s equal the number
of a’s.

The input to M will look like this:

The output should be:

4/26/2018

22

The Details (ε)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},

s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

       

1

The Details (ε)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

       

2

4/26/2018

23

The Details (ε)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

       

6

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   a a   

1

4/26/2018

24

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   a a   

2

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ a   

3

4/26/2018

25

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ a   

3

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ a #  

4

4/26/2018

26

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ #  

3

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ #  

3

4/26/2018

27

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ #  

3

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4

4/26/2018

28

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4

4/26/2018

29

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # # 

5

4/26/2018

30

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   a $ # # 

5

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   a a # # 

5

4/26/2018

31

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   a a b # 

5

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   a a b b 

5

4/26/2018

32

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   a a b b 

6

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   a a b b 

1

The steps are the same as
previous example until we read
the b; skip to there

4/26/2018

33

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for strings:
ε, aa, aabb, a, aab, b

   $ a b b 

3

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ a # b 

4

4/26/2018

34

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # b 

3

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # b 

3

4/26/2018

35

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4

In state 4, go left until
we hit a blank

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for strings:
ε, aa, aabb, a, aab, b

   $ $ # # 

4

4/26/2018

36

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # # 

5

4/26/2018

37

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   $ $ # # 

5

Go right, replacing $ with a and #
with b, then move left, as in the last
part of the previous example.

The Details(aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   a a b b 

6

4/26/2018

38

The Details (aab)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   a a b  

1
You should try this one.

The Details (b)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #},
s = 1, H = {6},  =

Show what happens for
strings:
ε, aa, aabb, aab, b

   b    

1

In the first step, move right. Then there is
no transition in the diagram. But there is an
implied transition to a dead state, i.e. a new
halting state that does not accept.

4/26/2018

39

Notes on Programming

The machine has a strong procedural feel, with one phase
coming after another.

There are common idioms, like scan left until you find a
blank

There are two common ways to scan back and forth
marking things off.

Often there is a final phase to fix up the output.

Even a very simple machine is a nuisance to write.

