MA/CSSE 474
% ° Theory of Computation

g’ CFL Hierarchy
CFL Decision Problems

-

Your Questions?

“ « Previous class days'

&, material | have included some

-+ Reading Assignments slides online that we will
: not have time to do in
W2« HW120r 13 problems class, but may be helpful

. to you anyway.
Anything else

INGTALLING (RITICAL UF'I?ATES E
PLEASE DO NOT ATTEMPT ANY IMMTATI(}NS

Tt e e Hart s o Hart AB rights et T Waidat sen

4/26/2018

{xey : X,y € {0, 1}* and x # y}
SURPRISINGLY, it is Context-free! HW 13. Here is
the beginning of a proof:

We can build a PDA M to accept L. All M has to do
is to find one way in which x and y differ.

M starts by pushing a bottom of stack marker # onto
the stack.

Then it nondeterministically chooses to go to state 1
or 2.

PDA Variations?

e In HW12, we see that acceptance by "accepting state
only" is equivalent to acceptance by empty stack and
accepting state.

Equivalent In this sense: Given a language L, there is
a PDA that accepts L by accepting state and empty
stack iff there is a PDA that accepts L by accepting
state only.

e FSM plus two stacks?

e FSM plus FIFO queue (instead of stack)?

4/26/2018

4/26/2018

Closure Theorems for Context-Free Languages

The context-free languages are closed under:

_ Gy = (V2 2, Ry, Sy)
« Concatenation | generate languages L, and L,

o Kleene star

¢ Reverse

Formal details are on next 4 slides;
we will do them informally instead.

Closure Under Union

Let G, = (V4, 24, Ry, S4), and
G, = (Va, 2y, Ry, Sy).

Assume that G, and G, have disjoint sets of nonterminals,
not including S.

Let L = L(G,) U L(G,).

We can show that L is CF by exhibiting a CFG for
it:
G=(,uV,uU{S}, £, UL,
RiUR,U{S—>S,,S > S,},
S)

Closure Under Concatenation

Let G1 = (V1, 21, R1, S1), and
G, = (Va, 2y, Ry, Sy).

Assume that G, and G, have disjoint sets of nonterminals,
not including S.

Let L = L(G4)L(G,).
We can show that L is CF by exhibiting a CFG for it:
G=(V,uV,U{S}L Z, UL,

RiUR,uU{S > S,S,},
S)

Closure Under Kleene Star
C LetG=(V, %R, S,).

Assume that G does not have the nonterminal S.
Let L = L(G)*.

We can show that L is CF by exhibiting a CFG for it:
: G=(V,u{S} %,

Riu{S—>¢S—>SS}
S)

4/26/2018

Closure Under Reverse
LR={w e T*: w = xR for some x € L}.
Let G = (V, %, R, S) be in Chomsky normal form.

Every rule in G is of the form X — BC or X — a, where X, B, and C are
elementsof V-Xand a e X.

e X — a: L(X)={a}. {a}Rk ={a}.
e X = BC: L(X) = L(B)L(C). (L(B)L(C))R = L(C)RL(B)R.

Construct, from G, a new grammar G’, such that L(G’) = LR:
G’ = (Vg, Zg, R, Sg), where R’ is constructed as follows:

e For every rule in G of the form X — BC, add to R’ the rule X — CB.

e For every rule in G of the form X — a, add to R’ the rule X — a.

Closure Under Intersection

The context-free languages are not closed under
intersection:

The proof is by counterexample. Let:

L, ={a"b"c™ n,m>0} /*equala’sandDb’s.
L, ={am™b"c":n,m>0} /*equal b’sandC’s.

Both L, and L, are context-free, since there exist
straightforward context-free grammars for them.

) Recall: Closed under union but not
But now consider: closed under intersection implies
L=LnL, not closed under complement.
= {a"b"c": n > 0}| And we saw a specific example of a
CFL whose complement was not
CF.

4/26/2018

4/26/2018

Closure Under Complement

L1 M L2 = —|(—|L1 |\ —|L2)

The context-free languages are closed under union, so if
they were closed under complement, they would be
closed under intersection (which they are not).

Alternative approach:

In a previous class, we demonstrated that the complement
of L = APB"C" is context-free, while L itself is not
context-free,

The Intersection of a Context-Free Language
and a Regular Language is Context-Free

L=L(M,),aPDA=(K,, £, Ty, Ay, Sy, Ay).

R =L(M,), a deterministic FSM = (K,, Z, 3, S,, A,).

We construct a new PDA, M, that accepts L n R by simulating the
parallel execution of M, and M,.

M= (K, x Ky, Z, T4, A, [S4, S5], Ay x A). | use square brackets
. for ordered pairs of
Insertinto A: states from K; x K,, to
For each rule ((g4, &, B), (P4, 7)) in A,, distinguish them from
and each rule (q,, a, p,) in s, the tuples that are
_ for transitions in M,
Foreachrule ((q4, €, B), (p1,7v)in Ay, M,, and M.

and each state ¢, in K,,
A Contains (([q1’ q2]1 €, B)’ ([p1’ qZ]’ Y))

This works because: we can get away with only one stack.

* The Difference between a Context-Free Language
and a Regular Language is Context-Free

Theorem: The difference (L, — L,) between a context-free
language L, and a regular language L, is context-free.

Proof: L, —L,=L; =L,
If L, is regular then so is —L,.

If L, is context-free, so is L, N —L,.

Halting

It is possible that a PDA may
e not halt,
e never finish reading its input.

Let X = {a} and consider M =

.»:/.»:/a }//"\\ a/a/e >
|0 === O nun©
) e/e/a

LiM)={a}: (1,a,¢€)|-(2,a,a)|-(3,¢,¢)

On any other input except a:
e M will never halt, or
e M will never finish reading its input unless its input is «.

4/26/2018

Nondeterminism and Decisions

1. There are context-free languages for which no
deterministic PDA exists.

2. Itis possible that a PDA may
e not halt,
e not ever finish reading its input.
e require time that is exponential in the length of its
input.

3. There is no PDA minimization algorithm.
It is undecidable whether a PDA is minimal.

Solutions to the Problem

e For NDFSMs:
e Convert to deterministic, or
e Simulate all paths in parallel.

e For NDPDAs:
e No general solution.
e Formal solutions usually involve changing the
grammar.
e Such as Chomsky or Greibach Normal form.
e Practical solutions:
e Preserve the structure of the grammar, but
e Only work on a subset of the CFLs.
o LL(k), LR(k) (compilers course)

4/26/2018

4/26/2018

Deterministic PDAs

A PDA M is deterministic iff:

e A, contains no pairs of transitions that compete with
each other, and

« Whenever M is in an accepting configuration it has
no available moves.

M can choose between
accepting and taking the

\ elele g-transition, so it is not
deterministic.

Deterministic CFLs (very quick
overview without many details)

Alanguage L is deterministic context-free iff L$
can be accepted by some deterministic PDA.

Why $?

LetL =a* u{a"b": n>0}.

4/26/2018

An NDPDA for L

L=a*u {a"b":n>0}.

A DPDA for L$

L=a*u{a"b":n>0}.

10

DCFL Properties (skip the details)

The Deterministic CF Languages are closed under complement.

The Deterministic CF Languages are not closed under
intersection or union.

Nondeterministic CFLs

Theorem: There exist CLFs that are not deterministic.

Proof: By example. Let L = {albick,i=jorj=k}. Lis CF. If Lis DCF
then so is:

L' =-L.
={abick i,j,k>0andi=j=k}u
{w e {a, b, c}* : the letters are out of order}.

But then so is:
L" =L" n a*b*c*.
= {a"b"c", n >0}.

Butitisn’t. So L is CF but not DCF.

This simple fact poses a real problem for the designers of efficient
context-free parsers.

Solution: design a language that is deterministic. LL(k) or LR(k).

4/26/2018

11

The CFL Hierarchy

Context-free
Languages

Not inherently
Ambiguous CFLs

f — T \|||
|| Deterministic J /
\ CFLs
/
\ e,
/i;ugu!ur
Ql guages
— d___ﬂ____/
T _—
— e —

Context-Free Languages Over
a Single-Letter Alphabet

Theorem: Any context-free language over a single-letter
alphabet is regular.

Proof: Requires Parikh’s Theorem, which we are
skipping

4/26/2018

12

Algorithms and Decision
Procedures for
Context-Free Languages

Chapter 14

Decision Procedures for CFLs

Membership: Given a language L and a string w, is win L?
Two approaches:
e If L is context-free, then there exists some context-free
grammar G that generates it. Try derivations in G and see
whether any of them generates w.

Problem (later slide):

¢ If L is context-free, then there exists some PDA M that
accepts it. Run M on w.

Problem (later slide):

4/26/2018

13

4/26/2018

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L?

Two approaches:
e If L is context-free, then there exists some context-free
grammar G that generates it. Try derivations in G and see
whether any of them generates w.

S—> ST|a Try to derive aaa

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L?

¢ If L is context-free, then there exists some PDA M that
accepts it. Run M on w.

Problem:

\//— ‘| e/e/a - ; a/a/e _r‘/_m

14

Using a Grammar

decideCFLusingGrammar(L: CFL, w: string) =
1. If given a PDA, build G so that L(G) = L(M).
2. If w = g then if Sg is nullable then accept, else reject.

3. If w= ¢ then:
3.1 Construct G’ in Chomsky normal form such that
L(G') = L(G) — {g}.

3.2 If G' derives w, it does so in steps. Try all
derivations in G' of steps. If one of them
derives w, accept. Otherwise reject.

How many steps (as a function of |w|) in the
derivation of w from CNF grammar G' ?

Using a Grammar

decideCFLusingGrammar(L: CFL, w: string) =
1. If given a PDA, build G so that L(G) = L(M).
2. If w = g then if Sg is nullable then accept, else reject.

3. If w= ¢ then:
3.1 Construct G’ in Chomsky normal form such that
L(G') = L(G) — {g}.

3.2 If G' derives w, it does so in 2-|w| - 1 steps. Try all
derivations in G' of 2:|w| - 1 steps. If one of them
derives w, accept. Otherwise reject.

Alternative O(n3) algorithm: CKY.
a.k.a. CYK.

4/26/2018

15

Emptiness

Given a context-free language L, is L = &7

decideCFLempty(G: context-free grammar) =
1. Let G’ = removeunproductive(G).

2. If Sis not present in G’ then return True
else return False.

Finiteness

Given a context-free language L, is L infinite?
decideCFLinfinite(G: context-free grammar) =

1. Lexicographically enumerate all strings in X* of length
greater than b" and less than or equal to b™** + b".

2. If, for any such string w, decideCFL(L, w) returns True
then return True. L is infinite.

3. If, for all such strings w, decideCFL(L, w) returns False
then return False. L is not infinite.

Why these bounds?

4/26/2018

16

Some Undecidable Questions about CFLs

elsL=3*?

e Is the complement of L context-free?

e Is L regular?
[] IS L1 = LZ?

e Is L inherently ambiguous?

e Is G ambiguous?

Regular and CF Languages

Regular Languages

e regular exprs.
e or
e regular grammars
e = DFSMs
® recognize
e minimize FSMs

e closed under:

4 concatenation

4 union

+ Kleene star

¢ complement

4 intersection
e pumping theorem
e D=ND

Context-Free Languages

e context-free grammars

e = NDPDAs
e parse
e try to find unambiguous grammars
e try to reduce nondeterminism in PDAs
o find efficient parsers
e closed under:
4 concatenation
4 union
+ Kleene star

¢ intersection w/ reg. langs
e pumping theorem
e D=ND

4/26/2018

17

4/26/2018

N TURING MACHINE INTRO

Languages and Machines

Context-Free
Languages

Regula
Languages
reg exps
FSMs

unrestricted grammars
ring Machine

18

gGrammars, SD Languages, and Turing Machines

/‘ SD Language
Unrestricted
Grammar

Accepts

Turing
Machine

Turing Machines (TMs)
We want a new kind of automaton:

« powerful enough to describe all computable things,

unlike FSMs and PDAs.

« simple enough that we can reason formally about it

like FSMs and PDAs,
unlike real computers.

Goal: Be able to prove things about what can and
cannot be computed.

4/26/2018

19

Turing Machines

Finite State Controller
Sy gy s o By, I

At each step, the machine must:

e choose its next state,
¢ write on the current square, and
e move left or right.

A Formal Definition

A (deterministic) Turing machine M is (K, X, T, 3, s, H):

e K is a finite set of states;
e X is the input alphabet, which does not contain & ;
e [' is the tape alphabet,

which must contain £ and have X as a subset.
e s € K is the initial state;
e H c K is the set of halting states;
e 3 is the transition function:

(K-H) x T to K x I' x {—, <}
non-halting xtape — state xtape x direction to move
state char char (Rorl)

4/26/2018

20

Notes on the Definition

1. The input tape is infinite in both directions.

2.3 is a function, not a relation. So this is a definition for
deterministic Turing machines.

3. 8 must be defined for all (state, tape symbol) pairs unless the
state is a halting state.

4. Turing machines do not necessarily halt (unlike FSM's and
most PDAs). Why? To halt, they must enter a halting state.
Otherwise they loop.

5. Turing machines generate output, so they can compute
functions.

An Example
M takes as input a string in the language:
{aibj, 0 <j<i},

and adds b’s as required to make the number of b’s equal the number
of a’s.

The input to M will look like this:

[~Jafea]=]2]v[afafa]
'y
|

The output should be:

|._.‘J‘a‘a‘ahb‘b‘_|‘
4
1
1

4/26/2018

21

The Details (g)

K={1,2,3,4,56},2={a b}, T={a b, &, #,
s=1,H={6},5=

a/a/—
$/$/— a/5/— 8§18/
#1#—> H1H]~—
bt/
o J

Show what happens for

strings:
€, aa, aabb, aab, b
| a| a

The Details (g)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—
$/%/—>
B4 ; -

Show what happens for

strings:
€, aa, aabb, aab, b
Q| a| a

4/26/2018

22

The Details (g)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—
$/$/— a/5/— 8§18/
#1#—> H1H]~—
bt/
o J

Show what happens for

strings:
€, aa, aabb, aab, b
| a| a

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—
$/%/—>
B4 ; -

Show what happens for

strings:
€, aa, aabb, aab, b
Q| a| a

4/26/2018

23

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—
$/$/— a/5/— 8§18/
#1#—> H1H]~—
bt/
o J

Show what happens for

strings:
€, aa, aabb, aab, b
| a| a

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—

Show what happens for

strings:
€, aa, aabb, aab, b
Q| a| a

4/26/2018

24

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—

Show what happens for
strings:

€, aa, aabb, aab, b

Q| $|a| Q@ Q| Q

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—

Show what happens for

strings:
€, aa, aabb, aab, b
Q| Q

4/26/2018

25

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—

Show what happens for
strings:

€, aa, aabb, aab, b

Qi a| $|$ | #| Q| Q

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—

Show what happens for
strings:

€, aa, aabb, aab, b

aja| $|$ | #| Q)| Q

4/26/2018

26

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—

Show what happens for
strings:

€, aa, aabb, aab, b

Qi a| $|$ | #| Q| Q

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—

Show what happens for
strings:

€, aa, aabb, aab, b

Qi a| $|$ | #| # | Q

T

4/26/2018

27

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—

Show what happens for

strings:
€, aa, aabb, aab, b
Q

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—

Show what happens for

strings:
€, aa, aabb, aab, b
a

4/26/2018

28

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—
$/$/— a/5/— 8§18/
#1#—> H1H]~—
bt/
o J

Show what happens for

strings:
€, aa, aabb, aab, b
Q

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—
$/%/—>
B4 ; -

Show what happens for

strings:
€, aa, aabb, aab, b
a

4/26/2018

29

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—

Show what happens for

strings:
€, aa, aabb, aab, b
Q

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—

Show what happens for
strings:

€, aa, aabb, aab, b

Q| a)| a|la | # | # | Q

T

4/26/2018

30

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—

Show what happens for
strings:

€, aa, aabb, aab, b

Q| Q| alla | b | # | Q

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—
$/§/—-
H#t—
a/s/— o i b/

Show what happens for
strings:

€, aa, aabb, aab, b

aj|a a| a b b a

4/26/2018

31

The Details(aa)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—
$/§/—-
H#]—>
a/s/— T b/

Show what happens for
strings:

€, aa, aabb, aab, b

Q| Q| alla | b| b | Q

The Details (aabb)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—
$/§/—-
H#]—>
a/s/— T b/

Show what happens for
strings:

€, aa, aabb, aab, b

Qi a| a|l a| b| b | O

The steps are the same as
previous example until we read

the b; skip to there

4/26/2018

32

The Details (aabb)

K={1,2,3,4,56},>={a, b}, ={a, b, &, $, #,
s=1, H=1{6},5=

a/a/—
$/§/—>
#/#—
a/$/— S

Show what happens for strings:
€, aa, aabb, a, aab, b

Q| $)a| b| b | Q

The Details (aabb)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—
$/§/—>
#/#/
3

Show what happens for
strings:

€, aa, aabb, aab, b

b | O

4/26/2018

33

The Details (aabb)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—
$/§/—-
H#t—
a/s/— o i b/

Show what happens for
strings:

€, aa, aabb, aab, b

Q|| $| $ | # b | Q4

The Details (aabb)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—
$/§/—-
H#t—
a/s/— o i b/

Show what happens for
strings:

€, aa, aabb, aab, b

Qi Q| $| $ | # b | Q

4/26/2018

34

The Details (aabb)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—
$/%/—=
i —
a/s/— o i b/

Show what happens for
strings:
€, aa, aabb, aab, b

Q| Q)| Q| $| $ | # # | Q

In state 4, go left until
we hit a blank

The Details (aabb)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—
$/§/—>

Show what happens for strings:
€, aa, aabb, a, aab, b

| 4

4/26/2018

35

The Details (aabb)

K={1,2,3,4,5,6},2={a, b}, ={a, b, &, $, #},
s=1, H={6},0=

a/a/—
$/%/—>
B4 ; -

Show what happens for
strings:

€, aa, aabb, aab, b

| Q

The Details (aabb)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—
$/%/—>
B4 ; -

Show what happens for
strings:

€, aa, aabb, aab, b

| 4

4/26/2018

36

The Details (aabb)
K={1,2,3,4,5,6},2={a,b},'={a, b, &, $, #},
s=1, H={6},06=

a/a/—
$/%/—=
>
a/s/— T b/

Show what happens for
strings:
€, aa, aabb, aab, b

Q|| $| $ | # # | Q

Go right, replacing $ with a and #
with b, then move left, as in the last

part of the previous example.

The Details(aabb)
K={1,2,3,4,5,6},2={a,b},={a, b, &, $, #},
s=1, H={6},06=

a/a/—
$/%/—=
>
a/s/— T b/

Show what happens for
strings:

€, aa, aabb, aab, b

Qi 3| ala | b| b | O

4/26/2018

37

The Details (aab)

K={1,2,3,4,56},2={a, b}, '={a, b, £, $, #},

s=1, H={6},56=
a/a/—
$/§/—>

a/s/—

Show what happens for
strings:

€, aa, aabb, aab, b

Q| Q| al|l a| b | Q] Q

|£| You should try this one.

The Details (b)

K={1,2,3,4,5,6},2={a, b}, ={a, b, £, $, #},
s=1, H={6},0=

a/a/—--./\I

S5 | T a/s/—~ §/5/<—
#iE—=\ ¥ #tf -

7 L %
o %/.I/—*

Show what happens for
i strings:

Q/0/~——— \
@ €, aa, aabb, aab, b
b

Q a|a

In the first step, move right. Then there is

no transition in the diagram. But there is an

implied transition to a dead state, i.e. a new
halting state that does not accept.

4/26/2018

38

Notes on Programming

The machine has a strong procedural feel, with one phase
coming after another.

There are common idioms, like scan left until you find a
blank

There are two common ways to scan back and forth
marking things off.

Often there is a final phase to fix up the output.

Even a very simple machine is a nuisance to write.

4/26/2018

39

