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Your Questions?
• Previous class days' 

material

• Reading Assignments

• HW 12 or 13 problems
• Anything else



The Context-Free Pumping Theorem

If L is a context-free language, then
k  1       ( strings w  L, where |w|  k

(u, v, x, y, z (w = uvxyz,
vy  , 
|vxy|  k, and 
q  0 (uvqxyqz is in L)))).

Write it in 
contrapositive 
form.  Try to 
do this before 
going on.

Pumping Theorem contrapositive
• We want to write it in contrapositive form, so we can use it to 

show a language is NOT context-free.  Original:

If L is a context-free language, then
k  1       ( strings w  L, where |w|  k

(u, v, x, y, z (w = uvxyz,
vy  , 
|vxy|  k, and 
q  0 (uvqxyqz is in L)))).

Contrapositive:  If
k  1 ( string w  L, where |w|  k

(u, v, x, y, z
(w = uvxyz,
vy  , 
|vxy|  k, and 
q  0 (uvqxyqz is not in L)))), 

then L is not a CFL.



Regular vs. CF Pumping Theorems
Similarities:

● We don't get to choose k. 

● We choose w, the string to be pumped, based on k. 

● We don't get to choose how w is broken up (into xyz or uvxyz) 

● We choose a value for q that shows that w isn’t pumpable.

● We may apply closure theorems before we start.

Things that are different in CFL Pumping Theorem:

● Two regions, v and y, must be pumped in tandem.

● We don’t know anything about where in the strings v and y will 
fall in the string w.  All we know is that they are reasonably “close 

together”, i.e., 
|vxy|  k.

● Either v or y may be empty, but not both. 

An Example of Pumping: AnBnCn

AnBnCn = {anbncn, n 0}

Choose  w = ak bk ck (we don't get to choose the k)
1 | 2 | 3      (the regions: all a's, all b's, all c's)

If either v or y spans two regions, then let q = 2 (i.e., pump in 
once).  The resulting string will have letters out of order and 
thus not be in AnBnCn.

Other possibilities for (v region, y region)
(1, 1):  q=2 gives us more a's than b's or c's. (2, 2) and (3,3) similar.
(1, 2):  q=2 gives more a's and b's than c's.  (2, 3) is similar.
(1, 3): Impossible because |vxy| must be  k.



An Example of Pumping: {    , n 0}

L = {   , n  0}

The elements of L:

a n2

an2

n w

0 

1 a1

2 a4

3 a9

4 a16

5 a25

6 a36

Nested and Cross-Serial Dependencies
PalEven = {wwR : w  {a, b}*}

a a b b a a

The dependencies are nested.  Context-free.

WcW = {wcw : w  {a, b}*}

a a b c a a b

Cross-serial dependencies.  Not context-free.



Work with one or two other 
students on these

• {anbman, n, m  0 and n  m}

• WcW = {wcw : w  {a, b}*} 

• {(ab)nanbn : n > 0}

• {xcy : x, y  {0, 1}* and x  y}

Halting
It is possible that a PDA may

● not halt, 
● never finish reading its input.   

Let  = {a} and consider M = 

L(M) = {a}:  (1, a, ) |- (2, a, a) |- (3, , ) 

On any other input except a: 
● M will never halt.  
● M will never finish reading its input unless its input is .  



Nondeterminism and Decisions

1. There are context-free languages for which no 
deterministic PDA exists. 

2. It is possible that a PDA may
● not halt, 
● not ever finish reading its input.
● require time that is exponential in the length of its 

input.

3. There is no PDA minimization  algorithm.
It is undecidable whether a PDA is minimal.

Solutions to the Problem

● For NDFSMs:
● Convert to deterministic, or
● Simulate all paths in parallel.

● For NDPDAs:
● No general solution.
● Formal solutions usually involve changing the

grammar.
● Such as Chomsky or Greibach Normal form.

● Practical solutions:
● Preserve the structure of the grammar, but
● Only work on a subset of the CFLs.

● LL(k),  LR(k)        (compilers course)



Closure Theorems for Context-Free Languages

The context-free languages are closed under:

● Union

● Concatenation

● Kleene star

● Reverse

Let G1 = (V1, 1, R1, S1), and
G2 = (V2, 2, R2, S2) 

generate languages L1 and L2

Formal details on next slides; 
we will do them informally

Closure Under Union

Let G1 = (V1, 1, R1, S1), and
G2 = (V2, 2, R2, S2).

Assume that G1 and G2 have disjoint sets of nonterminals,
not including S.

Let L = L(G1)  L(G2).

We can show that L is CF by exhibiting a CFG for
it:  

G = (V1  V2  {S}, 1  2, 
R1  R2  {S  S1, S  S2}, 
S) 



Closure Under Concatenation
Let G1 = (V1, 1, R1, S1), and

G2 = (V2, 2, R2, S2).

Assume that G1 and G2 have disjoint sets of nonterminals,
not including S.

Let L = L(G1)L(G2).

We can show that L is CF by exhibiting a CFG for it:

G = (V1  V2  {S}, 1  2, 
R1  R2  {S  S1 S2}, 
S) 

Closure Under Kleene Star
Let G = (V, , R, S1). 

Assume that G does not have the nonterminal S.

Let L = L(G)*.

We can show that L is CF by exhibiting a CFG for it:

G = (V1  {S}, 1, 
R1  {S  , S  S S1}, 
S) 



Closure Under Reverse
LR= {w  * : w = xR for some x  L}. 

Let G = (V, , R, S) be in Chomsky normal form.

Every rule in G is of the form X  BC or X  a, where X, B, and C are 
elements of V -  and a  .

● X  a:  L(X) = {a}.  {a}R = {a}.  

● X  BC: L(X) = L(B)L(C).             (L(B)L(C))R = L(C)RL(B)R.  

Construct, from G, a new grammar G, such that L(G) = LR: 
G = (VG, G, R, SG), where R is constructed as follows:

● For every rule in G of the form X  BC, add to R the rule X  CB.

● For every rule in G of the form X  a, add to R the rule X  a.


