
Pumping
Theorem
Examples

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW 12 or 13 problems
• Anything else

The Context-Free Pumping Theorem

If L is a context-free language, then
k  1 ( strings w  L, where |w|  k

(u, v, x, y, z (w = uvxyz,
vy  ,
|vxy|  k, and
q  0 (uvqxyqz is in L)))).

Write it in
contrapositive
form. Try to
do this before
going on.

Pumping Theorem contrapositive
• We want to write it in contrapositive form, so we can use it to

show a language is NOT context-free. Original:

If L is a context-free language, then
k  1 ( strings w  L, where |w|  k

(u, v, x, y, z (w = uvxyz,
vy  ,
|vxy|  k, and
q  0 (uvqxyqz is in L)))).

Contrapositive: If
k  1 ( string w  L, where |w|  k

(u, v, x, y, z
(w = uvxyz,
vy  ,
|vxy|  k, and
q  0 (uvqxyqz is not in L)))),

then L is not a CFL.

Regular vs. CF Pumping Theorems
Similarities:

● We don't get to choose k.

● We choose w, the string to be pumped, based on k.

● We don't get to choose how w is broken up (into xyz or uvxyz)

● We choose a value for q that shows that w isn’t pumpable.

● We may apply closure theorems before we start.

Things that are different in CFL Pumping Theorem:

● Two regions, v and y, must be pumped in tandem.

● We don’t know anything about where in the strings v and y will
fall in the string w. All we know is that they are reasonably “close

together”, i.e.,
|vxy|  k.

● Either v or y may be empty, but not both.

An Example of Pumping: AnBnCn

AnBnCn = {anbncn, n 0}

Choose w = ak bk ck (we don't get to choose the k)
1 | 2 | 3 (the regions: all a's, all b's, all c's)

If either v or y spans two regions, then let q = 2 (i.e., pump in
once). The resulting string will have letters out of order and
thus not be in AnBnCn.

Other possibilities for (v region, y region)
(1, 1): q=2 gives us more a's than b's or c's. (2, 2) and (3,3) similar.
(1, 2): q=2 gives more a's and b's than c's. (2, 3) is similar.
(1, 3): Impossible because |vxy| must be  k.

An Example of Pumping: { , n 0}

L = { , n  0}

The elements of L:

a n2

an2

n w

0 

1 a1

2 a4

3 a9

4 a16

5 a25

6 a36

Nested and Cross-Serial Dependencies
PalEven = {wwR : w  {a, b}*}

a a b b a a

The dependencies are nested. Context-free.

WcW = {wcw : w  {a, b}*}

a a b c a a b

Cross-serial dependencies. Not context-free.

Work with one or two other
students on these

• {anbman, n, m  0 and n  m}

• WcW = {wcw : w  {a, b}*}

• {(ab)nanbn : n > 0}

• {xcy : x, y  {0, 1}* and x  y}

Halting
It is possible that a PDA may

● not halt,
● never finish reading its input.

Let  = {a} and consider M =

L(M) = {a}: (1, a, ) |- (2, a, a) |- (3, , )

On any other input except a:
● M will never halt.
● M will never finish reading its input unless its input is .

Nondeterminism and Decisions

1. There are context-free languages for which no
deterministic PDA exists.

2. It is possible that a PDA may
● not halt,
● not ever finish reading its input.
● require time that is exponential in the length of its

input.

3. There is no PDA minimization algorithm.
It is undecidable whether a PDA is minimal.

Solutions to the Problem

● For NDFSMs:
● Convert to deterministic, or
● Simulate all paths in parallel.

● For NDPDAs:
● No general solution.
● Formal solutions usually involve changing the

grammar.
● Such as Chomsky or Greibach Normal form.

● Practical solutions:
● Preserve the structure of the grammar, but
● Only work on a subset of the CFLs.

● LL(k), LR(k) (compilers course)

Closure Theorems for Context-Free Languages

The context-free languages are closed under:

● Union

● Concatenation

● Kleene star

● Reverse

Let G1 = (V1, 1, R1, S1), and
G2 = (V2, 2, R2, S2)

generate languages L1 and L2

Formal details on next slides;
we will do them informally

Closure Under Union

Let G1 = (V1, 1, R1, S1), and
G2 = (V2, 2, R2, S2).

Assume that G1 and G2 have disjoint sets of nonterminals,
not including S.

Let L = L(G1)  L(G2).

We can show that L is CF by exhibiting a CFG for
it:

G = (V1  V2  {S}, 1  2,
R1  R2  {S  S1, S  S2},
S)

Closure Under Concatenation
Let G1 = (V1, 1, R1, S1), and

G2 = (V2, 2, R2, S2).

Assume that G1 and G2 have disjoint sets of nonterminals,
not including S.

Let L = L(G1)L(G2).

We can show that L is CF by exhibiting a CFG for it:

G = (V1  V2  {S}, 1  2,
R1  R2  {S  S1 S2},
S)

Closure Under Kleene Star
Let G = (V, , R, S1).

Assume that G does not have the nonterminal S.

Let L = L(G)*.

We can show that L is CF by exhibiting a CFG for it:

G = (V1  {S}, 1,
R1  {S  , S  S S1},
S)

Closure Under Reverse
LR= {w  * : w = xR for some x  L}.

Let G = (V, , R, S) be in Chomsky normal form.

Every rule in G is of the form X  BC or X  a, where X, B, and C are
elements of V -  and a  .

● X  a: L(X) = {a}. {a}R = {a}.

● X  BC: L(X) = L(B)L(C). (L(B)L(C))R = L(C)RL(B)R.

Construct, from G, a new grammar G, such that L(G) = LR:
G = (VG, G, R, SG), where R is constructed as follows:

● For every rule in G of the form X  BC, add to R the rule X  CB.

● For every rule in G of the form X  a, add to R the rule X  a.

