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Theory of Computation

Recap: Going One Way

Lemma: Each context-free language is accepted by 
some PDA.

Proof (by construction):

The idea:  Let the stack do the work.

Two approaches:

• Top down

• Bottom up



Top-down VS Bottom-up

Approach Top-down Bottom-up

Read the input 
string

left-to-right left-to-right

Derivation leftmost rightmost

Order of 
derivation 
discovery

forward backward

Bottom-Up PDA

Top-down parser discovers a leftmost derivation of the 
input string (If any).
Bottom-up parser discovers a rightmost derivation (in 
reverse order)

The outline of M is:

M = ({p, q}, , V, , p, {q}), where  contains:

● The shift transitions: ((p, c, ), (p, c)), for each c  .

● The reduce transitions: ((p, , (s1s2…sn.)R), (p, X)), for each rule 
X  s1s2…sn. in G.  Undoes an application of this rule.

● The finish-up transition: ((p, , S), (q, )).



Bottom-Up PDA

(1) E  E + T
(2) E  T
(3) T  T  F
(4) T  F
(5) F  (E)
(6) F  id

Reduce Transitions:
(1)   (p, , T + E), (p, E)
(2)   (p, , T), (p, E)
(3)   (p, , F  T), (p, T)
(4)   (p, , F), (p, T)
(5)   (p, , )E( ), (p, F)
(6)   (p, , id), (p, F)

Shift Transitions:
(7)   (p, id, ), (p, id) 
(8)   (p, (, ), (p, () 
(9)   (p, ), ), (p, )) 
(10) (p, +, ), (p, +) 
(11) (p, , ), (p, ) 

The idea:  Let the stack keep track of what has been found.

Discover a rightmost derivation in reverse order.  
Start with the string of terminals and attempt to 
"pull it back" (reduce)  to S.

When the right side of a production is 
on the top of the stack, we can replace 
it by the left side of that production…

…or not!  That's where the nondeterminism comes in:  
choice between shift and reduce; choice between two reductions.  

Example:
id + id * id

Hidden during class, revealed later: 
Solution to bottom-up example
A bottom-up parser is sometimes called a shift-reduce parser.  Show how 
it works on  id + id * id

State                 stack               remaining input     transition to use
p                        id + id * id             7
p                       id                       + id * id                6            
p                       F                        + id * id                4       
p                       T                        + id * id                2          
p                       E                        + id * id               10
p                       +E                       id * id                  7
p                       id+E * id                      6
p                       F+E * id                      4
p                       T+E                     * id                     11
p                       *T+E                    id                        7
p                       id*T+E                    6
p                        F*T+E                   3
p                        T+E                       1
p                         E                          0
q                          

Note that the top of the stack is on the left.  This is what I should have 
done in the class for sections 1 and 2 (and I did do it for section 3).



Acceptance by PDA  derived from CFG

• Much more complex than the other direction.

• Nonterminals in the grammar that we build from the 
PDA M are based on a combination of M's states and 
stack symbols.

• It gets very messy.

• Takes 9½  dense pages in the textbook (265-274).

• I think we can use our limited course time better.

How Many Context-Free Languages Are There?
(we had a slide just like this for regular languages)

Theorem: For any finite input alphabet Σ, there is a 
countably infinite number of CFLs over Σ.

Proof: 
● Upper bound: we can lexicographically enumerate

all the CFGs.  

● Lower bound: Each of {a}, {aa}, {aaa}, … is a CFL.

The number of languages over Σ is uncountable.

Thus there are more languages than there are context-
free languages.

So there must be some languages that are not context-
free.



Languages That Are and 
Are Not Context-Free

a*b* is regular.

AnBn = {anbn : n  0} is context-free but not regular.

AnBnCn = {anbncn : n  0} is not context-free.  
We will show this soon.

Is every regular language also context-free?

Showing that L is Context-Free

Techniques for showing that a language L is context-free:

1. Exhibit a CFG for L.

2. Exhibit a PDA for L.

3. Use the closure properties of context-free languages.

Unfortunately, these are weaker than they are for
regular languages.

union, reverse, concatenation, Kleene star
intersection of a CFL with a regular language

NOT intersection, complement, set difference



CFL Pumping Theorem

Show that L is Not Context-Free

Recall the basis for the pumping theorem for regular 
languages:  A DFSM M.

Why would it be hard to use a PDA to show that long 
strings from a CFL can be pumped?

If a string is longer than the number of M's states…



Some Tree Geometry Basics

The height h of a tree is the length of the longest path from the 
root to any leaf.

The branching factor b of a tree is the largest number of 
children associated with any node in the tree.

Theorem: The length of the yield (concatenation of leaf nodes) 
of any tree T with height h and branching factor b is  bh.      
Shown in CSSE 230.

A Review of Parse Trees

A parse tree, (a.k.a. derivation tree) derived from a 
grammar G = (V, , R, S), is a rooted, ordered tree in 
which:

● Every leaf node is labeled with an element of   {}, 

● The root node is labeled S, 

● Every interior node is labeled with an element of N
(i.e., V - ), 

● If m is a non-leaf node labeled X and the children of m
(left-to-right on the tree) are labeled x1, x2, …, xn, then 
the rule X  x1 x2 … xn is in R.



From Grammars to Trees
Given a context-free grammar G:

● Let n be the number of nonterminal symbols in G.
● Let b be the branching factor of G

Suppose that a tree T is generated by G and no nonterminal appears 
more than once on any path from the root:

The maximum height of T is:

The maximum length of T’s yield is:

The Context-Free Pumping Theorem
We use parse trees, not machines, as the basis for our argument.
Let L = L(G), and let wL.

Let T be a parse tree for w such that has the smallest possible 
number of nodes among all trees based on a derivation of w from G. 

Suppose L(G) contains a string w such that  |w| is greater than bn. 
Then its parse tree must look like (for some nonterminal X):

X[1] is the lowest place in 
the tree for which this 
happens.  
I.e., there is no other X in 
the derivation of x from X[2].



The Context-Free Pumping Theorem

There is another derivation in G:

S *  uXz *  uxz, 

in which, at X[1], the nonrecursive rule that leads to x is used 
instead of the recursive one that leads to vXy.  

So uxz is also in L(G).

Derivation of w

The Context-Free Pumping Theorem

There are infinitely many derivations in G, such as:

S *  uXz *  uvXyz *  uvvXyyz *  uvvxyyz

Those derivations produce the strings: 
uv2xy2z, uv3xy3z, uv4xy4z, …  

So all of those strings are also in L(G).



The Context-Free Pumping Theorem

If rule1 is X  Xa, we could have v = .

If rule1 is X  aX, we could have y = .

But it is not possible that both v and y are .  If they were, then the 
derivation S * uXz * uxz would also yield w and it would create a 
parse tree with fewer nodes.  But that contradicts the assumption that 
we started with a parse tree for w with the smallest possible number 
of nodes. 

The Context-Free Pumping Theorem

The height of the subtree rooted at [1] is at most:

So |vxy|  .



The Context-Free Pumping Theorem

If L is a context-free language, then
k  1       ( strings w  L, where |w|  k

(u, v, x, y, z (w = uvxyz,
vy  , 
|vxy|  k, and 
q  0 (uvqxyqz is in L)))).

Write it in 
contrapositive 
form.  Try to 
do this before 
going on.

Pumping Theorem contrapositive
• We want to write it in contrapositive form, so we can use it to 

show a language is NOT context-free.  Original:

If L is a context-free language, then
k  1       ( strings w  L, where |w|  k

(u, v, x, y, z (w = uvxyz,
vy  , 
|vxy|  k, and 
q  0 (uvqxyqz is in L)))).

Contrapositive:  If
k  1 ( string w  L, where |w|  k

(u, v, x, y, z
(w = uvxyz,
vy  , 
|vxy|  k, and 
q  0 (uvqxyqz is not in L)))), 

then L is not a CFL.



Regular vs. CF Pumping Theorems
Similarities:

● We don't get to choose k. 

● We choose w, the string to be pumped, based on k. 

● We don't get to choose how w is broken up (into xyz or uvxyz) 

● We choose a value for q that shows that w isn’t pumpable.

● We may apply closure theorems before we start.

Things that are different in CFL Pumping Theorem:

● Two regions, v and y, must be pumped in tandem.

● We don’t know anything about where in the strings v and y will 
fall in the string w.  All we know is that they are reasonably “close 

together”, i.e., 
|vxy|  k.

● Either v or y may be empty, but not both. 

Pumping Theorem contrapositive
• We want to write it in contrapositive form, so we can use it to 

show a language is NOT context-free.  Original:

If L is a context-free language, then
k  1       ( strings w  L, where |w|  k

(u, v, x, y, z (w = uvxyz,
vy  , 
|vxy|  k, and 
q  0 (uvqxyqz is in L)))).

Contrapositive:  If
k  1 ( string w  L, where |w|  k

(u, v, x, y, z
(w = uvxyz,
vy  , 
|vxy|  k, and 
q  0 (uvqxyqz is not in L)))), 

then L is not a CFL.

Example:  AnBnCn



An Example of Pumping: AnBnCn

AnBnCn = {anbncn, n 0}

Choose  w = ak bk  ck (we don't get to choose the k)
1 | 2 | 3      (the regions: all a's, all b's, all c's)

If either v or y spans two regions, then let q = 2 (i.e., pump in 
once).  The resulting string will have letters out of order and 
thus not be in AnBnCn.

If both v and y each contain only one distinct character, set q to 
2.  Additional copies of at most two different characters are 
added, leaving the third unchanged.  
We no longer have equal numbers of the three letters, so the 
resulting string is not in AnBnCn. 

An Example of Pumping: {    , n 0}

L = {   , n  0}

The elements of L:

a n2

an2

n w

0 

1 a1

2 a4

3 a9

4 a16

5 a25

6 a36



Nested and Cross-Serial Dependencies

PalEven = {wwR : w  {a, b}*}

a a b b a a

The dependencies are nested.

WcW = {wcw : w  {a, b}*}

a a b c a a b

Cross-serial dependencies.

Work with another student on 
these

• WcW = {wcw : w  {a, b}*} 

• {(ab)nanbn : n > 0}

• {x#y : x, y  {0, 1}* and x  y}


