e i Y NS

SR R R TR N TS AR R

1 MA/CSSE 474
¢* Theory of Computation

Nondeterminism

Parsing (top-down, bottom-up)

Your Questions?

“ « Previous class days'
“. material

"+ Reading Assignments

2 - HW11 or 12 problems
« Anything else

E H
CAN YOU GET THIS L WE'LL JUST TRAVEL [:| THAT
DONE IN THIRTY % FASTER THAN LIGHT |3 SOUNDS gxcuse me
DAYS? f TO A BLACK HOLE || TFFY. FOR BEING
| 2 AND DISCOVER A E FLEXIBLE.
YES, § DOORWAY IN TIME. |3 \
ABSOLUTELY. |
g
] aen H B E

Copyright @ 28682 United Feature Syndicate, Inec.

4/20/2018

More on Nondeterminism
Accepting Mismatches

L={am™b": m=n; m, n>0}

Start with the case where n = m:

alsla b/ale

\8 - :Q

More on Nondeterminism
Accepting Mismatches

L={am™b": m=n; m, n>0}

Start with the case where n = m:

alela b/ale

\8 - :Q

e If stack and input are empty, halt and reject.

e If input is empty but stack is not (m > n) (accept):

e If stack is empty but input is not (m < n) (accept):

4/20/2018

More on Nondeterminism
Accepting Mismatches

L={am™b": m=n;m, n>0}

als/a b/ale

\8 - Cﬂ

e If input is empty but stack is not (m > n) (accept):

alela blale c/ale

\(% b/a/e Cm elale CS)

More on Nondeterminism
Accepting Mismatches

L={am™b": m=n; m, n>0}

alsla blale

\8 s Cﬂ

e If stack is empty but input is not (m < n) (accept):

alela b/ale b/ele

B il

4/20/2018

L={a™": m=n; m,n>0}

a/e/a b/a/e e/a/e
b/a/e sfafe

e State 4: Clear the input
e State 3: Clear the stack
e A non-deterministic machine!
What if we could
detect end of input (as we can in real-world
situations)?
detect empty stack?
e Add end-of-input marker $ to
e Add bottom-of-stack marker #to I

Reducing Nondeterminism

e Original non-deterministic model

afefa |FW b/a/e (_‘] efafe [/_\.1
L bjafe K eafe X
|8 | 3)
\) LS N\
b/efe Ny —
f?{fﬁﬁ—
> LY

e \With the markers:

a/e/a
C efe/# __Q
IO

4/20/2018

The Power of Nondeterminism
Consider A"B"C" = {a"b"c": n > 0}.

PDA for it?

The Power of Nondeterminism

Consider APB"C" = {a"b"c": n > 0}. PDA for it?

Now consider L = — A"B"Cn. L is the union of two
languages:

1.{w € {a, b, c}* : the letters are out of order}, and

2. {abick:i, j,k>=0and (i #jorj=Kk)} (in other words,
unequal numbers of a’s, b’s, and c’s).

4/20/2018

A PDA for L = -A"B"Cn

¢ A PDA that doesn't use its stack. It accepts L by checking for lettersout
£ — of order. o

N — —
‘./ -\. efe/e - < \ PDA like the one in Example 12.7 that checks for unequal numbers
L

0
\{' A of a's and b's, followed b by any number of ¢'s R
(\ PDA like the one in Example 12.7 except that it accepts any numhu -'“‘)
Ia and then checks for unequal numbers b's mdc o —

Are the Context-Free Languages
Closed Under Complement?

—A"B"C" is context free.

If the CF languages were closed under complement,
then

——A"B"C" = A"B"CP

would also be context-free.

But we will prove that it is not.

4/20/2018

4/20/2018

L ={a"b™cP: n,m,p >0and n=m or m=p}

S —> NC [* n = m, then arbitrary C's
S—-> QP [* arbitrary a's, then p #m
N—>A /* more a's than b's
N—>B /* more b's than a's
A—>a

A — aA

A — aAb

B—>b

B — Bb

B — aBb

C—oe¢|cC [* add any number of c's
P> B /* more b's than c's
P->C /* more c's than b's
B'—>b

B'— bB'

B'— bB'c

C'—>c|Cc

C'—>C'c

C'—> bC'c

Q-oelaQ [* prefix with any number of a's

More on PDAs
A PDA for {wwR : w € {a, b}*}:

a/s/a a/a/e
e/e/e

b/e/b b/b/e

i P \‘,

B TR R e

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is
exactly the class of context-free languages.

Recall: context-free languages are languages that
can be defined with context-free grammars.

Restate theorem:

Can describe with context-free grammar

Can accept by PDA

Going One Way

Lemma: Every context-free language is accepted by
some PDA.

Proof (by construction):

The idea: Let the stack do most of the work.
Two approaches:

* Top down

* Bottom up

4/20/2018

4/20/2018

Top Down
The idea: Let the stack keep track of expectations.

Example: Arithmetic expressions

E—-E+T

E->T

To>Tx*F . ofe/E B
T>F Y) '.—'.//T\\\
F — (E) et I/\;\x}’
Foid ~
(1) (a,¢ E), (g, E+T) (7) (g,id, id), (g, €)

(2) (d,¢E), (g, T) @) @ ()(aze)

(3) (a4, T),(a, TF) 9 (@))) (e

(4) (q,¢T),(a,F) (10) (g, +, +), (0, €)

(5) (a,¢F) (a,(E)) (11)(a, *, *), (q, €)

(6) (a,¢ F), (q,id)

A Top-Down Parser
The outline of M is:

/) all but the first of the transitions described below

M=({p,q}, Z, V, A, p, {q}), where A contains:
e The start-up transition ((p, ¢, €), (q, S)).

e For each rule X — s;s,...S,. in R, the transition:
((q’ g, X)! (q7 S182"'Sn))'

e For each character ¢ € X, the transition:
((q, ¢, c), (g, €)).

4/20/2018

Another Example

L={a"b™cPd9: m+n=p+q}

0 (p.&¢)(q,S)
(1) S —» asd 1 (g, & S), (q, aSd)
2)s->T 2 (0,5 S),(q,T)
3)s—->u 3 (0,¢ S), (g, V)
(4)T—> aTc 4 (9,¢,T), (g, aTc)
B)T->V 5 (0, T),(q, V)
(6) U > bud 6 (g, V), (q, bud)
(7YU->V 7 (g,¢ U),(q,V)
(8) V- bve 8 (q,¢ V), (g, bVc)
9Q)V-oe 9 (q,¢ V), (q,)

10 (9, a, @), (9, ¢)

11(a, b, b), (q, ¢)
input=a a b ccd 12 (g, ¢, c), (q, €)

13 (9, d, d), (9, ¢)

trans state unread input stack

Notice the Nondeterminism

Machines constructed with the algorithm are often nondeterministic,
even when they needn't be. This happens even with trivial
languages.

Example: A"B" = {a"b™ n > 0}

A grammar for A"B" is: A PDA M for AB" is:
0) ((p, &, ¢), (0, S))

[11S > aSb (1) ((g, &, S), (g, aSb))

2]1S—>¢ (2) ((a, & S), (g, €))
(3) (g, a), (q, €)
(4) (g, b, b), (a, €))

But transitions 1 and 2 make M nondeterministic.
A directly constructed machine for A"B" can be deterministic.

Constructing deterministic top-down parsers major topic in CSSE 404.

10

4/20/2018

- The Other Way to Build a PDA - Directly

L={a"bm™cPd: m+n=p+q}

(1)S—>asd (6) U - bud
(2)S>T (MHU->V
3)sSs->U (8) V— bvc
(4)T > aTc QV-e
B)T->V

input=a a b cdd

The Other Way to Build a PDA - Directly

L={a"bM™cPdd:m+n=p+q}

(1) S —» asd (6) U - bud
(2)S—>T (7YU->V
B)S—>U (8) V—> bvc
(4) T —> aTc 9V -o>ce
B)T->V

alela b/e/a clale d/a/e
N m b/e/a . clale Q d/ale , m

ORNORNBOIC

clale d/a/e
d/ale

input=a a b c dd

1

4/20/2018

Example for practice later

L = {a"b*a"}
0(p, & ¢)(q,S)
(MS—e * 1(a, ¢ S), (q, ¢)
(2)S—>B 2(g, ¢ S),(q,B)
(3)S > aSa 3(q, ¢ S), (g, aSa)
(4)B>e¢ 4(q,& B), (q,¢)
(5)B — bB 5(q, & B), (q, bB)
6(q,a a) (q,¢)
input=a a b b a a 7(q, b, b), (a,¢)
trans state unread input stack
p aabbaa €
0 q aabbaa S
3 q aabbaa aSa
6 q abbaa Sa
3 q abbaa aSaa
6 q bbaa Saa
2 q bbaa Baa
5 q bbaa bBaa
7 q baa Baa
5 q baa bBaa
7 q aa Baa
4 q aa aa
6 q a a
6 q € €

Bottom-Up Parser

The idea: Let the stack keep track of what has been found.
(1)E>E+T
QE->T
B)T>T*F
4T->F N \— >
(5) F - (E) AR)))
(6)F—>Id P 2

Reduce Transitions: Shift Transitions
(1) (p.&e, T+E) (p, E) (7) (p,id, €), (p, id)
(2) (p.& T). (P, E) ®) (p. (2, (p. ()
(3) (b &, F*T) (p, T) © () e, ()
(4) (pr &, F)! (p! T) (10) (p, +, 8), (p, +)
(5) (pr &,)E()! (p! F) (11) (p, *, 8), (p, *)
(6) (p, e, id), (p, F)

Example: id +id *id. Do the derivation first

12

A Bottom-Up Parser

e/S/e =
all but the last of the

transitions described \-j

below

The outline of M is:

M= ({p, q}, =, V, A, p, {q}), where A contains:
e The shift transitions: ((p, ¢, €), (p, ¢)), foreach ¢ € X.

e The reduce transitions: ((p, &, (S4S,..-S,-)R), (p, X)), for each rule
X — 845,...8,.in G. Un does an application of this rule.

e The finish up transition: ((p, &, S), (q, €)).

A top-down parser discovers a leftmost derivation of the input string (If any).
Bottom-up discovers rightmost derivation (in reverse order)

4/20/2018

13

