
4/20/2018

1

Nondeterminism

Parsing (top-down, bottom-up)

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW11 or 12 problems
• Anything else

4/20/2018

2

More on Nondeterminism
Accepting Mismatches

L = {ambn : m  n; m, n > 0}

Start with the case where n = m:

a//a

b/a/

b/a/

1 2

More on Nondeterminism
Accepting Mismatches

L = {ambn : m  n; m, n > 0}

Start with the case where n = m:

a//a

b/a/

b/a/

● If stack and input are empty, halt and reject.

● If input is empty but stack is not (m > n) (accept):

● If stack is empty but input is not (m < n) (accept):

1 2

4/20/2018

3

More on Nondeterminism
Accepting Mismatches

L = {ambn : m  n; m, n > 0}

a//a

b/a/

b/a/

● If input is empty but stack is not (m > n) (accept):

a//a

b/a/

b/a/

/a/

/a/

1 2

21 3

More on Nondeterminism
Accepting Mismatches

L = {ambn : m  n; m, n > 0}

a//a

b/a/

b/a/

● If stack is empty but input is not (m < n) (accept):

a//a

b/a/

b/a/

1 2

21 4

b//

b//

4/20/2018

4

L = {ambn : m  n; m, n > 0}

● State 4: Clear the input
● State 3: Clear the stack
● A non-deterministic machine!

What if we could
detect end of input (as we can in real-world

situations)?
detect empty stack?

● Add end-of-input marker $ to Σ
● Add bottom-of-stack marker # to Γ

Reducing Nondeterminism
● Original non-deterministic model

● With the markers:

4/20/2018

5

The Power of Nondeterminism

Consider AnBnCn = {anbncn: n  0}.

PDA for it?

The Power of Nondeterminism

Consider AnBnCn = {anbncn: n  0}. PDA for it?

Now consider L =  AnBnCn. L is the union of two
languages:

1. {w  {a, b, c}* : the letters are out of order}, and

2. {aibjck: i, j, k  0 and (i  j or j  k)} (in other words,
unequal numbers of a’s, b’s, and c’s).

4/20/2018

6

A PDA for L = AnBnCn

Are the Context-Free Languages
Closed Under Complement?

AnBnCn is context free.

If the CF languages were closed under complement,
then

AnBnCn = AnBnCn

would also be context-free.

But we will prove that it is not.

4/20/2018

7

L = {anbmcp: n, m, p  0 and n  m or m  p}

S  NC /* n  m, then arbitrary c's
S  QP /* arbitrary a's, then p  m
N  A /* more a's than b's
N  B /* more b's than a's
A  a
A  aA
A  aAb
B  b
B  Bb
B  aBb
C   | cC /* add any number of c's
P  B' /* more b's than c's
P  C' /* more c's than b's
B'  b
B'  bB'
B'  bB'c
C'  c | C'c
C'  C'c
C'  bC'c
Q   | aQ /* prefix with any number of a's

More on PDAs
A PDA for {wwR : w  {a, b}*}:

What about a PDA to accept {ww : w  {a, b}*}?

4/20/2018

8

PDAs and Context-Free Grammars

Theorem: The class of languages accepted by PDAs is
exactly the class of context-free languages.

Recall: context-free languages are languages that
can be defined with context-free grammars.

Restate theorem:

Can describe with context-free grammar

Can accept by PDA

Going One Way

Lemma: Every context-free language is accepted by
some PDA.

Proof (by construction):

The idea: Let the stack do most of the work.

Two approaches:

• Top down

• Bottom up

4/20/2018

9

Top Down
The idea: Let the stack keep track of expectations.

Example: Arithmetic expressions

E  E + T
E  T
T  T  F
T  F
F  (E)
F  id

(1) (q, , E), (q, E+T) (7) (q, id, id), (q, )
(2) (q, , E), (q, T) (8) (q, (, (), (q, )
(3) (q, , T), (q, T*F) (9) (q,),)), (q, )
(4) (q, , T), (q, F) (10) (q, +, +), (q, )
(5) (q, , F), (q, (E)) (11) (q, , ), (q, )
(6) (q, , F), (q, id)

A Top-Down Parser

The outline of M is:

M = ({p, q}, , V, , p, {q}), where  contains:
● The start-up transition ((p, , ), (q, S)).

● For each rule X  s1s2…sn. in R, the transition:
((q, , X), (q, s1s2…sn)).

● For each character c  , the transition:
((q, c, c), (q, )).

4/20/2018

10

Another Example
L = {anbmcpdq : m + n = p + q}

0 (p, , ), (q, S)
(1) S  aSd 1 (q, , S), (q, aSd)
(2) S  T 2 (q, , S), (q, T)
(3) S  U 3 (q, , S), (q, U)
(4) T  aTc 4 (q, , T), (q, aTc)
(5) T  V 5 (q, , T), (q, V)
(6) U  bUd 6 (q, , U), (q, bUd)
(7) U  V 7 (q, , U), (q, V)
(8) V  bVc 8 (q, , V), (q, bVc)
(9) V   9 (q, , V), (q, )

10 (q, a, a), (q, )
11 (q, b, b), (q, )

input = a a b c c d 12 (q, c, c), (q, )
13 (q, d, d), (q, )

trans state unread input stack

Notice the Nondeterminism
Machines constructed with the algorithm are often nondeterministic,

even when they needn't be. This happens even with trivial
languages.

Example: AnBn = {anbn: n  0}

A grammar for AnBn is: A PDA M for AnBn is:

(0) ((p, , ), (q, S))
[1] S  aSb (1) ((q, , S), (q, aSb))
[2] S   (2) ((q, , S), (q, ))

(3) ((q, a, a), (q, ))
(4) ((q, b, b), (q, ))

But transitions 1 and 2 make M nondeterministic.

A directly constructed machine for AnBn can be deterministic.

Constructing deterministic top-down parsers major topic in CSSE 404.

4/20/2018

11

The Other Way to Build a PDA - Directly

L = {anbmcpdq : m + n = p + q}

(1) S  aSd (6) U  bUd
(2) S  T (7) U  V
(3) S  U (8) V  bVc
(4) T  aTc (9) V  
(5) T  V

input = a a b c d d

The Other Way to Build a PDA - Directly
L = {anbmcpdq : m + n = p + q}

(1) S  aSd (6) U  bUd
(2) S  T (7) U  V
(3) S  U (8) V  bVc
(4) T  aTc (9) V  
(5) T  V

input = a a b c d d

1 2 3 4

a//a b//a c/a/ d/a/

b//a c/a/ d/a/

c/a/ d/a/

d/a/

4/20/2018

12

Example for practice later
L = {anb*an}

0 (p, , ), (q, S)
(1) S   * 1 (q, , S), (q, )
(2) S  B 2 (q, , S), (q, B)
(3) S  aSa 3 (q, , S), (q, aSa)
(4) B   4 (q, , B), (q, )
(5) B  bB 5 (q, , B), (q, bB)

6 (q, a, a), (q, )
input = a a b b a a 7 (q, b, b), (q, )
trans state unread input stack

p a a b b a a 
0 q a a b b a a S
3 q a a b b a a aSa
6 q a b b a a Sa
3 q a b b a a aSaa
6 q b b a a Saa
2 q b b a a Baa
5 q b b a a bBaa
7 q b a a Baa
5 q b a a bBaa
7 q a a Baa
4 q a a aa
6 q a a
6 q  

Bottom-Up Parser

(1) E  E + T
(2) E  T
(3) T  T  F
(4) T  F
(5) F  (E)
(6) F  id

Reduce Transitions:
(1) (p, , T + E), (p, E)
(2) (p, , T), (p, E)
(3) (p, , F  T), (p, T)
(4) (p, , F), (p, T)
(5) (p, ,)E(), (p, F)
(6) (p, , id), (p, F)

Shift Transitions
(7) (p, id, ), (p, id)
(8) (p, (, ), (p, ()
(9) (p,), ), (p,))
(10) (p, +, ), (p, +)
(11) (p, , ), (p, )

The idea: Let the stack keep track of what has been found.

Example: id + id * id. Do the derivation first

4/20/2018

13

A Bottom-Up Parser
The outline of M is:

M = ({p, q}, , V, , p, {q}), where  contains:

● The shift transitions: ((p, c, ), (p, c)), for each c  .

● The reduce transitions: ((p, , (s1s2…sn.)R), (p, X)), for each rule
X  s1s2…sn. in G. Un does an application of this rule.

● The finish up transition: ((p, , S), (q, )).

A top-down parser discovers a leftmost derivation of the input string (If any).
Bottom-up discovers rightmost derivation (in reverse order)

