4/19/2018

A PN EEs y—v e
'k“{‘.;_‘ N e)

MA/CSSE 474
Theory of Computation

PDA examples

More About Nondeterminism

iy i A AT e i
e T mp— e T N——
E s AT I X e R N T A

A)R B M R e Wy

NN SERIOINE e

Your Questions?

* Previous class days'
material

* Reading Assignments

« HW11 or 12 problems
* Anything else

MAUE, HAVE You Bver. | [weLL, T MARRIED
DONE ANYTHING FOrR SomeokE | | oyeg | HIAA
LESS FORTUNATE ¥ | WHAT DID i

You Po P

winv JohnHarnSudios.com

DCist. by Creatars Syndicase

4/19/2018

Recap: Definition of a Pushdown

Automaton
M= (K, Z,T,A,s,A), where:
K is a finite set of states
2 is the input alphabet |y 5nd 1 are not
I"is the stack alphabet | ecessarily disjoint
s € K is the initial state
A c K is the set of accepting states, and
A is the transition relation. It is a finite subset of

I(K x (Zu{e}) x F*)l X I(K X F*)l

state input string of state string of
symbol symbols symbols

org to pop to push
from top on stack

What does an individual element of A look like?

Recap: Definition of a Pushdown
Automaton

A configuration of M is an element of
Kx X* x '™,

The initial configuration of M is
(s, w, €), where w is the input string.

4/19/2018

Recap: Yields

Let ¢ be any element of £ U {&},
Let y,, v, and y be any elements of ['*, and
Let w be any element of =*.

Then:
(94, W, v4y) Fy (da W, 757) iff ((O4, €, 74), (A, 12)) € A.

Let + ,,* be the reflexive, transitive closure of F,.

C, vields configuration C, iff C, +,* C,

Recap: Nondeterminism

If M is in some configuration (q,, S, y) it is possible that:

e A contains exactly one transition that matches.
e A contains more than one transition that matches.

e A contains no transition that matches.

4/19/2018

Recap: Computations

A computation by M is a finite sequence of

configurations C,, C,, ..., C, for some n > 0 such that:

e C, is an initial configuration

e C, is of the form (q, ¢, v), for some state q € K,
and some string y in I'™*

e Coty City Co by -oc by Co

Recap: Accepting Computation

A computation C of M is an accepting computation iff:
e C=(s,w,¢g)ky*(q, ¢, €), and
e (cA

M accepts a string w iff at least one of its computations accepts.

Other paths may:
e Read all the input and halt in a nonaccepting state
e Read all the input and halt in an accepting state with a
non-empty stack
e Loop forever and never finish reading the input
e Reach a dead end where no more input can be read

The language accepted by M, denoted L(M),
is the set of all strinas accepted bv M.

4/19/2018

Rejecting
A computation C of M is a rejecting computation iff:

eC=(s,w,¢) F, (q, ¢),
« C is not an accepting computation, and
« M has no moves that it can make from (g, ¢, o).

M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts
nor rejects.

PDA examples

Construct PDAs to recognize specific
languages

4/19/2018

A PDA for Bal

(/e

M= (K, X, T, A, s, A), where:
K ={s} the states
2=)} the input alphabet
r={¢ the stack alphabet
A = {s}
A contains:

((s, (&) (s, () ™
((s,), (). (s, €))

**Important: This does not mean that the stack is empty

A PDA for AB" = {a"b": n > 0}

a/e/a b/a/e
6 b/a/S ‘-_

4/19/2018

A PDA for {wcwR: w € {a, b}*}

a/e/a a/a/e
C/&/a g
b/&/b b/b/e
M=(K, X, T, A, s, A), where: ;
K=o ths states HQW can we modify
z={a,b,c} the inputalphabet this PDA to accept
I' ={a, b} the stack alphabet R- *
A = {f} the accepting states {WW LW e {a’ b} } ?

A contains: ((s, a, ¢), (s, a))
((s, b, ¢), (s, b))
((s, c,¢), (f, €))
((f, a, a), (f, €))
((f, b, b), (f, €))

A PDA for {a"b?": n > 0}

4/19/2018

A PDA for {a"b?": n > 0}

a/e/aa b/a/e
b/a/e .

A PDA for PalEven ={wwR: w e {a, b}*}

S—e¢ : :

S s aSa This one is

S s bSb nondeterministic
A PDA:

4/19/2018

A PDA for PalEven ={wwR: w e {a, b}*}

S—>¢

S s aSa This one is
S 5 bSb nondeterministic
A PDA:
a/e/a
s
b/e/b

A PDA for {w e {a, b}*: #_(w) = #,(w)}

4/19/2018

A PDA for {w e {a, b}* : #,(w) = #,(w)}

a/s/a

.. a/b/s
0

/et b/s/b

More on Nondeterminism
Accepting Mismatches

L={am™b": m=n; m, n> 0}

Start with the case where n = m
ale/a blale

\z% b/a/e Cm

10

4/19/2018

More on Nondeterminism
Accepting Mismatches

L={am™b": m=n; m, n>0}

Start with the case where n = m:

alela blale

\Z\/Q/ b/ale Cm

e If stack and input are empty, halt and reject.

e If input is empty but stack is not (m > n) (accept):

e If stack is empty but input is not (m < n) (accept):

More on Nondeterminism
Accepting Mismatches

L={am™b": m=n; m, n>0}

alsla b/ale

?% b/a/e Cﬂ

e If input is empty but stack is not (m > n) (accept):

alela blale clale

6 blale Q\ elale
1 D)

11

4/19/2018

More on Nondeterminism
Accepting Mismatches

L={a™": m=n; m, n> 0}

alsla b/als

\zg b/a/e Cm

e |f stack is empty but input is not (m < n) (accept):

alela blale b/ele

B il

L={a™": m=n; m,n>0}

a/efa b/a/e) e/a/e
\Q b/a/e _Q a/a/n/ /_%
P
e State 4: Clear the input
e State 3: Clear the stack
e A non-deterministic machine!
What if we could
detect end of input (as we can in real-world
situations)?
detect empty stack?
e Add end-of-input marker $ to
e Add bottom-of-stack marker #to I

12

4/19/2018

Reducing Nondeterminism

e Original non-deterministic model

a/r./a b/a/erQ »:/a/»:
b/a/e efa/e
b/e/e -
\

e With the markers: @D b/e/s

a/e/a b/a/e e/a/e
O efe/# LQ b/a/e _Q $/a/e
0

), ©

el#tle

The Power of Nondeterminism
Consider APB"C" = {a"b"c": n > 0}.

PDA for it?

13

4/19/2018

The Power of Nondeterminism

Consider APB"C" = {a"b"c": n > 0}. PDA for it?

Now consider L = — A"B"C". L is the union of two
languages:

1. {w € {a, b, c}" : the letters are out of order}, and

2. {albick:i, j, k>0 and (i #jorj=Kk)} (inother words,
unequal numbers of a’s, b’s, and c’s).

A PDA for L = -A"B"C"

A PDA that doesn’t use its stack. It accepts | by checking for letters out
of order.

A PDA like the one in Example 12.7 that checks for unequal numbers
of a’s and b’s, followed by any number of C’s

A PDA like the one in Example 12.7 except that it accepts any number
of a’s and then checks for unequal numbers b’s and C’s

14

4/19/2018

L ={a"b™cP: n,m,p>0and n#morm=p}

S > NC [* n = m, then arbitrary c's
S—>QP [* arbitrary a's, then p #m
N—>A /* more a's than b's
N—>B /* more b's than a's
A—>a

A — aA

A — aAb

B—>b

B — Bb

B — aBb

C—>e¢|cC [* add any number of c's
P—>B /* more b's than c's
P—>C /* more c's than b's
B'—>Db

B' — bB'

B'— bB'c

C'>c|Cc

C'—>Cc

C'—>bC'c

Q—o¢elaQ [* prefix with any number of a's

Closure question

* s the set of context-free languages closed
under complement?

15

