
4/19/2018

1

PDA examples

More About Nondeterminism

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW11 or 12 problems
• Anything else

4/19/2018

2

Recap: Definition of a Pushdown
Automaton

M = (K, , , , s, A), where:
K is a finite set of states
 is the input alphabet
 is the stack alphabet
s  K is the initial state
A  K is the set of accepting states, and
 is the transition relation. It is a finite subset of

(K  (  {})  *)  (K  *)

state input string of state string of
symbol symbols symbols
or  to pop to push

from top on stack

 and  are not
necessarily disjoint

What does an individual element of  look like?

Recap: Definition of a Pushdown
Automaton

A configuration of M is an element of
K  *  *.

The initial configuration of M is
(s, w, ), where w is the input string.

4/19/2018

3

Recap: Yields

Let c be any element of   {},
Let 1, 2 and  be any elements of *, and
Let w be any element of *.

Then:

(q1, cw, 1) ⊦M (q2, w, 2) iff ((q1, c, 1), (q2, 2))  .

Let ⊦ M* be the reflexive, transitive closure of ⊦M.

C1 yields configuration C2 iff C1 ⊦M* C2

Recap: Nondeterminism

If M is in some configuration (q1, s, ) it is possible that:

●  contains exactly one transition that matches.

●  contains more than one transition that matches.

●  contains no transition that matches.

4/19/2018

4

Recap: Computations

A computation by M is a finite sequence of
configurations C0, C1, …, Cn for some n  0 such that:

● C0 is an initial configuration

● Cn is of the form (q, , ), for some state q  KM

and some string  in *

● C0 ⊦M C1 ⊦M C2 ⊦M … ⊦M Cn.

Recap: Accepting Computation

A computation C of M is an accepting computation iff:
● C = (s, w, ) ⊦M* (q, , ), and
● q  A.

M accepts a string w iff at least one of its computations accepts.

Other paths may:
● Read all the input and halt in a nonaccepting state
● Read all the input and halt in an accepting state with a

non-empty stack
● Loop forever and never finish reading the input
● Reach a dead end where no more input can be read

The language accepted by M, denoted L(M),
is the set of all strings accepted by M.

4/19/2018

5

Rejecting

A computation C of M is a rejecting computation iff:

● C = (s, w, ) ⊦M* (q, , ),
● C is not an accepting computation, and
● M has no moves that it can make from (q, , ).

M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts
nor rejects.

PDA examples

Construct PDAs to recognize specific
languages

4/19/2018

6

A PDA for Bal

M = (K, , , , s, A), where:
K = {s} the states
 = {(,)} the input alphabet
 = {(} the stack alphabet
A = {s}
 contains:

((s, (, ), (s, ()) **
((s,), (), (s, ))

**Important: This does not mean that the stack is empty

A PDA for AnBn = {anbn: n  0}

4/19/2018

7

M = (K, , , , s, A), where:
K = {s, f} the states
 = {a, b, c} the input alphabet
 = {a, b} the stack alphabet
A = {f} the accepting states
 contains: ((s, a, ), (s, a))

((s, b, ), (s, b))
((s, c, ), (f, ))
((f, a, a), (f, ))
((f, b, b), (f, ))

A PDA for {wcwR: w  {a, b}*}

How can we modify
this PDA to accept
{wwR: w  {a, b}*} ?

A PDA for {anb2n: n  0}

4/19/2018

8

A PDA for {anb2n: n  0}

A PDA for PalEven ={wwR: w  {a, b}*}

S  
S  aSa
S  bSb

A PDA:

This one is
nondeterministic

4/19/2018

9

A PDA for PalEven ={wwR: w  {a, b}*}

S  
S  aSa
S  bSb

A PDA:

This one is
nondeterministic

A PDA for {w  {a, b}* : #a(w) = #b(w)}

4/19/2018

10

A PDA for {w  {a, b}* : #a(w) = #b(w)}

More on Nondeterminism
Accepting Mismatches

L = {ambn : m  n; m, n > 0}

Start with the case where n = m:

a//a

b/a/

b/a/

1 2

4/19/2018

11

More on Nondeterminism
Accepting Mismatches

L = {ambn : m  n; m, n > 0}

Start with the case where n = m:

a//a

b/a/

b/a/

● If stack and input are empty, halt and reject.

● If input is empty but stack is not (m > n) (accept):

● If stack is empty but input is not (m < n) (accept):

1 2

More on Nondeterminism
Accepting Mismatches

L = {ambn : m  n; m, n > 0}

a//a

b/a/

b/a/

● If input is empty but stack is not (m > n) (accept):

a//a

b/a/

b/a/

/a/

/a/

1 2

21 3

4/19/2018

12

More on Nondeterminism
Accepting Mismatches

L = {ambn : m  n; m, n > 0}

a//a

b/a/

b/a/

● If stack is empty but input is not (m < n) (accept):

a//a

b/a/

b/a/

1 2

21 4

b//

b//

L = {ambn : m  n; m, n > 0}

● State 4: Clear the input
● State 3: Clear the stack
● A non-deterministic machine!

What if we could
detect end of input (as we can in real-world

situations)?
detect empty stack?

● Add end-of-input marker $ to Σ
● Add bottom-of-stack marker # to Γ

4/19/2018

13

Reducing Nondeterminism
● Original non-deterministic model

● With the markers:

The Power of Nondeterminism

Consider AnBnCn = {anbncn: n  0}.

PDA for it?

4/19/2018

14

The Power of Nondeterminism

Consider AnBnCn = {anbncn: n  0}. PDA for it?

Now consider L =  AnBnCn. L is the union of two
languages:

1. {w  {a, b, c}* : the letters are out of order}, and

2. {aibjck: i, j, k  0 and (i  j or j  k)} (in other words,
unequal numbers of a’s, b’s, and c’s).

A PDA for L = AnBnCn

4/19/2018

15

L = {anbmcp: n, m, p  0 and n  m or m  p}

S  NC /* n  m, then arbitrary c's
S  QP /* arbitrary a's, then p  m
N  A /* more a's than b's
N  B /* more b's than a's
A  a
A  aA
A  aAb
B  b
B  Bb
B  aBb
C   | cC /* add any number of c's
P  B' /* more b's than c's
P  C' /* more c's than b's
B'  b
B'  bB'
B'  bB'c
C'  c | C'c
C'  C'c
C'  bC'c
Q   | aQ /* prefix with any number of a's

Closure question

• Is the set of context-free languages closed
under complement?

