4/17/2018

MA/CSSE 474
Theory of Computation

More about Ambiguity Removal
Normal Forms (Chomsky and Greibach)

Pushdown Automata (PDA) Intro

y ‘w_-ff:_ \ ? "__.) v"‘.‘\:\-“ 5 "”'_t S %
NG

PDA examples

Your Questions?

* Previous class days' + HW10 or 11 problems
material
* Reading Assignments * Anything else

COLNSELING
SERVICE

PLEASE THINIK
OF A NUMBER

4/17/2018

Continue with Ambiguity Removal

* Remove ¢-rules (done last time)
 Eliminate symmetric rules to control precedence and

association

» Deal with optional suffixes, such as if ... else ...

Recap: An Example

G={S,T,A B,C,ab,c},{a b, c},R,S),

R= { S—>aTa

T — ABC
A—>aA|C
B—>Bb|C
C—o>cle}
removeEps(G: cfg) =
Recall: 1. LetG' =G.
After this 2. Find the set N of nullable nonterminals in G'.

algorithm runs,
L(G') = L(G) —{&})

3. Repeat until G’ contains no modifiable rules that
haven’t been processed:
Given the rule P — aQp, where Q € N,
add the rule P — off
if it is not already present and if aff = ¢
and if P = af.
4. Delete from G’ all rules of the form X — .
5. Return G'.

4/17/2018

What If ¢ € L?

atmostoneEps(G: cfg) =
1. G"” = removeEps(G).
2. If Sg is nullable then I*i.e., e e L(G)
2.1 Create in G a new start symbol S*.
2.2 Add to Ry the two rules:
S* > ¢
S* > Sg.
3. Return G".

But There Can Still Be Ambiguity

S* ¢ What about ()()() ?
S*—> S
S > SS
S—>(S)
S—()

S s

| |

s S

S‘/\s‘ ‘;/"x\\'3
S/\S /\ S/\\q
AN A A A

4/17/2018

Eliminating Symmetric Recursive Rules

S* > ¢
S*—> S
S—> SS
S —(9)
S—()

Replace S — SS with one of:

S —» SS, [* force branching to the left
S—>S,;S [* force branching to the right
So we get:
S*>e S >SS,
S*—>S S—>S;
S, —>(S)
Si1—()

Eliminating Symmetric Recursive Rules

o
S*>¢ ‘
S*—> S

S - SS, S
S-S, A

Sy > (S)

S
S, () /\
s s,

S

—
~
—
~
—
~

4/17/2018

Arithmetic Expressions

E—->E+E
E->E=*E
E — (E)
E—id
Problem 1: Associativity
E E

N

E E
E/VE E I‘E

id * id * id id = id = id

o
SR WY wgorE . w aa

Arithmetic Expressions

E->E+E
E->E=+E
E — (E)
E— id
Problem 2: Precedence
E

E
EﬁE E E
* id + id i i

E

id

4/17/2018

Arithmetic Expressions - A Better Way

E—->E+T

E—>T

T>T*F

T->F E

SIS N

id +dd = dd

Ambiguous Attachment

The dangling else problem:

<stmt> ::= i ¥ <cond> then <stmt>
<stmt> ::= i ¥ <cond> then <stmt> el se <stmt>
Consider:

it cond, then 1T cond, then st, else st,

4/17/2018

The Java Fix

<Statement> ::= <IfThenStatement> | <IfThenElseStatement> |
<IfThenElseStatementNoShortIf>

<StatementNoShortlf> ::= <block> |

<IfThenElseStatementNoShortlf> | ...
<IfThenStatement> ::= i f (<Expression>) <Statement>
<IfThenElseStatement> ::= i T (<Expression>)

<StatementNoShortlf> el se <Statement>

<IfThenElseStatementNoShortIf> ::=

i T (<Expression>) <StatementNoShortIf>

else <StatementNoShortIf>

<Statement>

<IfThenElseStatement>

T

if (cond) <StatementNoShortlf> else <Statement>

Going Too Far (removing Ambiguity)

S —> NP VP

NP — the Nominal | Nominal | ProperNoun | NP PP

Nominal — N | Adjs N

N — cat | girl | dogs | ball | chocolate |
bat

ProperNoun — Chris | Fluffy

Adjs — Adj Adjs | Adj

Adj —» young | older | smart

VP >V |VNP|VPPP

V — like | likes | thinks | hits

PP — Prep NP

Prep — with

e Chris likes the girl with the cat.

e Chris shot the bear with a rifle.

4/17/2018

Going Too Far

e Chris likes the girl with the cat.

e Chris shot the bear with a rifle.

e Chris shot the bear with a rifle.

Normal Forms

Anormal form F for a set C of data objects is a form,
i.e., a set of syntactically valid objects, with the following
two properties:

« For every element c of C, except possibly a finite set of
special cases, there exists some element f of F such
that f is equivalent to ¢ with respect to some set of
tasks.

e F is simpler than the original form in which the elements
of C are written. By “simpler” we mean that at least
some tasks are easier to perform on elements of F than
they would be on elements of C.

4/17/2018

Normal Form Examples

« Disjunctive normal form for database queries
so that they can be entered in a query-by-
example grid.

e Jordan normal form for a square matrix, in
which the matrix is almost diagonal in the sense
that its only non-zero entries lie on the diagonal
and the superdiagonal.

e Various normal forms for grammars to
support specific parsing techniques.

Normal Forms for Grammars

Chomsky Normal Form, in which all rules are of one of the
following two forms:

e X —> a,whereae, or
e X > BC, where B and C are elements of V - X.

Advantages:

e Parsers can use binary trees.
e Bounds on length of derivations (what are they?)

A/S\B
e \A B/

A

™~
| | | e

a a b B

|
b

B
\

B
|

b

4/17/2018

Normal Forms for Grammars

Greibach Normal Form, in which all rules are of the

following form:

eX—>af,whereaeXandp e (V-2)~.

Advantages:

« Bounds on length of derivations (what are they?)

e Greibach normal form grammars can easily be
converted to pushdown automata with no &-
transitions. This is useful because such PDAs are

guaranteed to halt.

Theorems: Normal Forms Exist

Theorem: Given a CFG G, there exists an equivalent
Chomsky normal form grammar G such that:

L(Gc) = L(G) — {e}.

Proof: The proof is by construction.

Details of Chomsky
conversion are complex but
straightforward; | leave
them for you to read in
Chapter 11 and/or in the last
18 slides from today.

Theorem: Given a CFG G, there exists an equivalent
Greibach normal form grammar G4 such that:

L(Gg) = L(G) — {e}.

Proof: The proof is also by construction.| cave them for you to

Details of Greibach
conversion are more
complex but still
straightforward,; |

read in Appendix D if
you wish (not req'd).

10

4/17/2018

The Price of Normal Forms

E->E+E
E — (E)
E - id

Converting to Chomsky normal form:

ES>EFE
E'>PE
E—->LE"
E'">ER
E—id
L —(
R —)
P -+

Conversion doesn’t change weak generative capacity but it may
change strong generative capacity.

Pushdown Automata

11

4/17/2018

Comparing Regular and Context-Free Languages

Regular Languages Context-Free Languages

e regular exprs.

or
e regular grammars o context-free grammars
e recognize e parse (use a PDA)

Recognizing Context-Free Languages

Two notions of recognition:
(1) Say yes or no, just like with FSMs

(2) Say yes or no, AND

if yes, describe the structure

12

4/17/2018

Definition of a Pushdown Automaton

M= (K, Z,T,A,s,A), where:
K is a finite set of states
2 is the input alphabet |y 5nd 1 are not
I"is the stack alphabet | ecessarily disjoint
s € K is the initial state
A c K is the set of accepting states, and
A is the transition relation. It is a finite subset of

I(K x (Zufe}) x I*) x (K x TI7%)

state input string of state string of
symbol symbols symbols

org to pop to push
from top on stack

Definition of a Pushdown Automaton

A configuration of M is an element of
Kx X* x '™,

The initial configuration of M is
(s, w, €), where w is the input string.

13

4/17/2018

Manipulating the Stack

c | will be written as cab

If c,C,...C, is pushed onto the stack:

%)

T 00

€4C,...Cc,cab

Yields

Let c be any element of X U {&},
Let y,, v, and y be any elements of I'*, and
Let w be any element of Z*.

Then:
(A4, eW, v4y) by (Ao, W, voy) iff ((d4, C, 14), (Do 72)) € A.

Let + ,* be the reflexive, transitive closure of Fy,.

C, vields configuration C, iff C, +* C,

14

4/17/2018

Computations

A computation by M is a finite sequence of configurations C,,
C4, ..., C, for some n > 0 such that:

e C, is an initial configuration,

e C_ is of the form (q, ¢, y), for some state q € K, and
some string y in I'*, and

e Cotry Ciby Coby-o- by Gy

Nondeterminism

If M is in some configuration (q4, S, v) it is possible that:

e A contains exactly one transition that matches.
e A contains more than one transition that matches.

e A contains no transition that matches.

15

4/17/2018

Accepting
A computation C of M is an accepting computation iff:

e C=(s,w,e¢)ky (g, s, ¢), and
e(gecA.

M accepts a string w iff at least one of its computations accepts.

Other paths may:
e Read all the input and halt in a nonaccepting state,
e Read all the input and halt in an accepting state with the stack not empty,
e Loop forever and never finish reading the input, or
e Reach a dead end where no more input can be read.

The language accepted by M, denoted L(M),
is the set of all strings accepted by M.

Rejecting
A computation C of M is a rejecting computation iff:
eC=(s,W,e)|ky*(q,e, o),
¢ C is not an accepting computation, and
« M has no moves that it can make from (q, ¢, o).
M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts
nor rejects.

16

4/17/2018

Details of CNF conversion

» The remainder of the slides give an overview.
» More details are in Chapter 11.
* We will not cover these details in class.

Converting to a Normal Form

1. Apply some transformation to G to get rid of
undesirable property 1. Show that the language
generated by G is unchanged.

2. Apply another transformation to G to get rid of
undesirable property 2. Show that the language
generated by G is unchanged and that undesirable
property 1 has not been reintroduced.

3. Continue until the grammar is in the desired form.

17

4/17/2018

Rule Substitution

X > aYc
Y—>b
Y > ZZ

We can replace the X rule with the rules:

X — abc
X > aZZc

X = a¥Yc = aZZc
| |

Rule Substitution

Theorem: Let G contain the rules:

X—>a¥YB and Yoy |vol.-|vn,
Replace X — oY by:

X=>ayB, X->oapp, ..., X->oyb.

The new grammar G' will be equivalent to G.

18

4/17/2018

Details of Conversion to CNF

* The rest of these slides summarize the CNF conversion
» More detail is given in Chapter 11 of the textbook
* We will not discuss this conversion process in class.

Rule Substitution

Replace X — aYB by:
X=>oayB, X-oappB, .., X->ayp.

Proof:
e Every string in L(G) is also in L(G"):

If X —> aYP is not used, then use same derivation.
If it is used, then one derivation is:
S=>..=>X¢g=daYBgp=day o= ... > W

Use this one instead:
S=>...=2>Xjg=> dayfod=...=>w

e Every string in L(G") is also in L(G): Every new rule
can be simulated by old rules.

19

4/17/2018

Convert to Chomsky Normal Form
1. Remove all e-rules, using the algorithm removeEps.
2. Remove all unit productions (rules of the form A — B).

3. Remove all rules whose right hand sides have length
greater than 1 and include a terminal:

(e.g., A—>aBorA— BaC)

4. Remove all rules whose right hand sides have length
greater than 2:

(e.g., A— BCDE)

Recap: Removing e-Productions
Remove all € productions:
(1) If there is a rule P - aQp and Q is nullable,

Then: Add the rule P — ap.

(2) Delete all rules Q — «.

20

4/17/2018

Removing e-Productions

Example:

S —>aA
A— B | CDC
B¢
B—->a

C —>BD
Db

D—c¢

Unit Productions

A unit production is a rule whose right-hand side
consists of a single nonterminal symbol.

Example:

S—> XY
X—>A
A—>Bla
B—>b
Y->T
T—>Y]|c

21

4/17/2018

Removing Unit Productions

removeUnits(G) =
1.LetG'=G.
2. Until no unit productions remain in G' do:
2.1 Choose some unit production X — Y.
2.2 Remove it from G'.
2.3 Consider only rules that still remain. For
every rule Y — B, where 8 € V*, do:
Add to G' the rule X — B unless itis a rule
that has already been removed once.
3. Return G'.

After removing epsilon productions and unit productions,
all rules whose right hand sides have length 1 are in
Chomsky Normal Form.

Removing Unit Productions

removeUnits(G) =
1. LetG'=G.
2. Until no unit productions remain in G' do:
2.1 Choose some unit production X — Y.
2.2 Remove it from G'.
2.3 Consider only rules that still remain. For every rule Y — 3,
where € V*, do:
Add to G' the rule X — B unless it is a rule that has
already been removed once.
3. Return G'.

Example: S—> XY
X—>A
A—>Bla
B—->b
Y>T
To>Y|c

22

4/17/2018

Mixed Rules

removeMixed(G) =

1.LetG'=G.

2. Create a new nonterminal T, for each terminal a in X.

3. Modify each rule whose right-hand side has length greater
than 1 and that contains a terminal symbol by substituting
T, for each occurrence of the terminal a.

4. Add to G, for each T,, the rule T, — a.

5. Return G~

Example:

A—>a

A—aB
A — BaC
A — BbC

Long Rules

removelLong(G) =
1.LetG’=G.
2. For each rule r of the form:

A = N4N,N;3N,...N,, n>2
create new nonterminals M,, M3, ... M.
3. Replace r with the rule A — N,M.,.
4. Add the rules:
M3 g N3M4, e
Mpq = NN,
5. Return G~

Example:
A — BCDEF

23

4/17/2018

An Example

S —»> aACa
A—>Bla
B>C|c
C—>cCle

removeEps returns:

S > aACa|aAa|aCa| aa
A—>Bla
B>C|c
C—>cCj|c

An Example

S > aACa|aAa|aCa| aa
A—>Bla
B->C|c
C—>cCj|c

Next we apply removeUnits:

Remove A - B. AddA— C|c.

Remove B — C. Add B — cC (B — c, already there).
Remove A —» C. Add A — cC (A — c, already there).

So removeUnits returns:
S »>aACa|aAa|aCa|aa
A— ajc|cC
B—->c|cC
C—>cCjlc

24

4/17/2018

An Example

S > aACa|aAa|aCa | aa
A— ajlc|cC

B—->c|cC

C—>cCj|c

Next we apply removeMixed, which returns:

S—>T,ACT, | T,AT, | T,CT, | T,T,
A—> alc|T.C

B->c|T.C

C>TC|c

T,—>a

T.,—>cC

An Example

S > TACT, | T,AT, | T,CT, | T,T,
A—> al|c|T.C

B->c|T,.C

C->TC]|c

T,—>a

T,—>cC

Finally, we apply removeLong, which returns:
S->T,S;, S->T,S; S->T.S, S—>T,T,
S, —>AS, S;- AT, S,— CT,

S, - CT,

A—> alc|T.C

B->c|T,.C

C->TC]|c

T,—>a

T,—>cC

25

