
4/17/2018

1

More about Ambiguity Removal

Normal Forms (Chomsky and Greibach)

Pushdown Automata (PDA) Intro

PDA examples

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW10 or 11 problems

• Anything else

4/17/2018

2

Continue with Ambiguity Removal

• Remove -rules (done last time)

• Eliminate symmetric rules to control precedence and
association

• Deal with optional suffixes, such as if … else …

Recap: An Example
G = {{S, T, A, B, C, a, b, c}, {a, b, c}, R, S),
R = { S  aTa

T  ABC
A  aA | C
B  Bb | C
C  c |  }

removeEps(G: cfg) =
1. Let G = G.
2. Find the set N of nullable nonterminals in G.
3. Repeat until G contains no modifiable rules that

haven’t been processed:
Given the rule P  Q, where Q  N,

add the rule P  
if it is not already present and if   

and if P  .
4. Delete from G all rules of the form X  .
5. Return G.

Recall:
After this
algorithm runs,
L(G') = L(G) – {})

4/17/2018

3

What If   L?

atmostoneEps(G: cfg) =
1. G = removeEps(G).
2. If SG is nullable then /* i. e.,   L(G)

2.1 Create in G a new start symbol S*.
2.2 Add to RG the two rules:

S*  
S*  SG.

3. Return G.

But There Can Still Be Ambiguity

S*   What about ()()() ?
S*  S
S  SS
S  (S)
S  ()

4/17/2018

4

Eliminating Symmetric Recursive Rules

S*  
S*  S
S  SS
S  (S)
S  ()

Replace S  SS with one of:

S  SS1 /* force branching to the left
S  S1S /* force branching to the right

So we get:

S*   S  SS1

S*  S S  S1

S1  (S)
S1  ()

Eliminating Symmetric Recursive Rules

S*  
S*  S
S  SS1

S  S1

S1  (S)
S1  ()

S*

S

S S1

S S1

S1

() () ()

4/17/2018

5

Arithmetic Expressions
E  E + E
E  E  E
E  (E)
E  id

E E

E E E E

E E E E

id  id  id id  id  id

Problem 1: Associativity

Arithmetic Expressions

E  E + E
E  E  E
E  (E)
E  id

E E

E E E E

E E E E

id  id + id id  id + id

Problem 2: Precedence

4/17/2018

6

Arithmetic Expressions - A Better Way

E  E + T
E T
T  T * F
T  F
F  (E)
F  id

Ambiguous Attachment

The dangling else problem:

<stmt> ::= if <cond> then <stmt>
<stmt> ::= if <cond> then <stmt> else <stmt>

Consider:

if cond1 then if cond2 then st1 else st2

4/17/2018

7

<Statement> ::= <IfThenStatement> | <IfThenElseStatement> |
<IfThenElseStatementNoShortIf>

<StatementNoShortIf> ::= <block> |
<IfThenElseStatementNoShortIf> | …

<IfThenStatement> ::= if (<Expression>) <Statement>
<IfThenElseStatement> ::= if (<Expression>)

<StatementNoShortIf> else <Statement>
<IfThenElseStatementNoShortIf> ::=

if (<Expression>) <StatementNoShortIf>
else <StatementNoShortIf>

<Statement>

<IfThenElseStatement>

if (cond) <StatementNoShortIf> else <Statement>

The Java Fix

Going Too Far (removing Ambiguity)

S  NP VP
NP  the Nominal | Nominal | ProperNoun | NP PP
Nominal  N | Adjs N
N  cat | girl | dogs | ball | chocolate |

bat
ProperNoun  Chris | Fluffy
Adjs  Adj Adjs | Adj
Adj  young | older | smart
VP  V | V NP | VP PP
V  like | likes | thinks | hits
PP  Prep NP
Prep  with

● Chris likes the girl with the cat.

● Chris shot the bear with a rifle.

4/17/2018

8

● Chris likes the girl with the cat.

● Chris shot the bear with a rifle.

● Chris shot the bear with a rifle.

Going Too Far

Normal Forms

A normal form F for a set C of data objects is a form,
i.e., a set of syntactically valid objects, with the following
two properties:

● For every element c of C, except possibly a finite set of
special cases, there exists some element f of F such
that f is equivalent to c with respect to some set of
tasks.

● F is simpler than the original form in which the elements
of C are written. By “simpler” we mean that at least
some tasks are easier to perform on elements of F than
they would be on elements of C.

4/17/2018

9

Normal Form Examples

● Disjunctive normal form for database queries
so that they can be entered in a query-by-
example grid.

● Jordan normal form for a square matrix, in
which the matrix is almost diagonal in the sense
that its only non-zero entries lie on the diagonal
and the superdiagonal.

● Various normal forms for grammars to
support specific parsing techniques.

Normal Forms for Grammars

Chomsky Normal Form, in which all rules are of one of the
following two forms:

● X  a, where a  , or
● X  BC, where B and C are elements of V - .

Advantages:

● Parsers can use binary trees.
● Bounds on length of derivations (what are they?)

S

A B

A A B B

a a b B B

b b

4/17/2018

10

Normal Forms for Grammars

Greibach Normal Form, in which all rules are of the
following form:

● X  a , where a   and   (V - )*.

Advantages:

● Bounds on length of derivations (what are they?)

● Greibach normal form grammars can easily be
converted to pushdown automata with no -
transitions. This is useful because such PDAs are
guaranteed to halt.

Theorems: Normal Forms Exist
Theorem: Given a CFG G, there exists an equivalent
Chomsky normal form grammar GC such that:

L(GC) = L(G) – {}.

Proof: The proof is by construction.

Theorem: Given a CFG G, there exists an equivalent
Greibach normal form grammar GG such that:

L(GG) = L(G) – {}.

Proof: The proof is also by construction.

Details of Chomsky
conversion are complex but
straightforward; I leave
them for you to read in
Chapter 11 and/or in the last
18 slides from today.

Details of Greibach
conversion are more
complex but still
straightforward; I
leave them for you to
read in Appendix D if
you wish (not req'd).

4/17/2018

11

The Price of Normal Forms

E  E + E
E  (E)
E  id

Converting to Chomsky normal form:

E  E E
E  P E
E  L E
E  E R
E  id
L  (
R )
P  +

Conversion doesn’t change weak generative capacity but it may
change strong generative capacity.

Pushdown Automata

4/17/2018

12

Comparing Regular and Context-Free Languages

Regular Languages Context-Free Languages

● regular exprs.
or

● regular grammars ● context-free grammars
● recognize ● parse (use a PDA)

Recognizing Context-Free Languages

Two notions of recognition:
(1) Say yes or no, just like with FSMs

(2) Say yes or no, AND

if yes, describe the structure

a + b * c

4/17/2018

13

Definition of a Pushdown Automaton

M = (K, , , , s, A), where:
K is a finite set of states
 is the input alphabet
 is the stack alphabet
s  K is the initial state
A  K is the set of accepting states, and
 is the transition relation. It is a finite subset of

(K  (  {})  *)  (K  *)

state input string of state string of
symbol symbols symbols
or  to pop to push

from top on stack

 and  are not
necessarily disjoint

Definition of a Pushdown Automaton

A configuration of M is an element of
K  *  *.

The initial configuration of M is
(s, w, ), where w is the input string.

4/17/2018

14

Manipulating the Stack
c will be written as cab

a

b

If c1c2…cn is pushed onto the stack:

c1

c2

cn
c
a
b

c1c2…cncab

Yields

Let c be any element of   {},
Let 1, 2 and  be any elements of *, and
Let w be any element of *.

Then:

(q1, cw, 1) ⊦M (q2, w, 2) iff ((q1, c, 1), (q2, 2))  .

Let ⊦ M* be the reflexive, transitive closure of ⊦M.

C1 yields configuration C2 iff C1 ⊦M* C2

4/17/2018

15

Computations

A computation by M is a finite sequence of configurations C0,
C1, …, Cn for some n  0 such that:

● C0 is an initial configuration,
● Cn is of the form (q, , ), for some state q  KM and

some string  in *, and
● C0 ⊦M C1 ⊦M C2 ⊦M … ⊦M Cn.

Nondeterminism

If M is in some configuration (q1, s, ) it is possible that:

●  contains exactly one transition that matches.

●  contains more than one transition that matches.

●  contains no transition that matches.

4/17/2018

16

Accepting

A computation C of M is an accepting computation iff:

● C = (s, w, ) ⊦M* (q, , ), and
● q  A.

M accepts a string w iff at least one of its computations accepts.

Other paths may:
● Read all the input and halt in a nonaccepting state,
● Read all the input and halt in an accepting state with the stack not empty,
● Loop forever and never finish reading the input, or
● Reach a dead end where no more input can be read.

The language accepted by M, denoted L(M),
is the set of all strings accepted by M.

Rejecting

A computation C of M is a rejecting computation iff:

● C = (s, w, ) | ⊦M* (q, , ),
● C is not an accepting computation, and
● M has no moves that it can make from (q, , ).

M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts
nor rejects.

4/17/2018

17

Details of CNF conversion

• The remainder of the slides give an overview.

• More details are in Chapter 11.

• We will not cover these details in class.

Converting to a Normal Form

1. Apply some transformation to G to get rid of
undesirable property 1. Show that the language
generated by G is unchanged.

2. Apply another transformation to G to get rid of
undesirable property 2. Show that the language
generated by G is unchanged and that undesirable
property 1 has not been reintroduced.

3. Continue until the grammar is in the desired form.

4/17/2018

18

Rule Substitution

X  aYc
Y  b
Y  ZZ

We can replace the X rule with the rules:

X  abc
X  aZZc

X  aYc aZZc

Rule Substitution
Theorem: Let G contain the rules:

X  Y and Y  1 | 2 | … | n ,

Replace X  Y by:

X  1, X  2, …, X  n.

The new grammar G' will be equivalent to G.

4/17/2018

19

Details of Conversion to CNF

• The rest of these slides summarize the CNF conversion

• More detail is given in Chapter 11 of the textbook

• We will not discuss this conversion process in class.

Rule Substitution
Replace X  Y by:

X  1, X  2, …, X  n.

Proof:
● Every string in L(G) is also in L(G'):

If X  Y is not used, then use same derivation.
If it is used, then one derivation is:
S  …  X  Y  k  …  w

Use this one instead:
S  …  X  k  …  w

● Every string in L(G') is also in L(G): Every new rule
can be simulated by old rules.

4/17/2018

20

Convert to Chomsky Normal Form

1. Remove all -rules, using the algorithm removeEps.

2. Remove all unit productions (rules of the form A  B).

3. Remove all rules whose right hand sides have length
greater than 1 and include a terminal:

(e.g., A  aB or A  BaC)

4. Remove all rules whose right hand sides have length
greater than 2:

(e.g., A  BCDE)

Remove all  productions:

(1) If there is a rule P  Q and Q is nullable,

Then: Add the rule P  .

(2) Delete all rules Q  .

Recap: Removing -Productions

4/17/2018

21

Example:

S  aA
A B | CDC
B  
B  a
C  BD
D  b
D  

Removing -Productions

Unit Productions

A unit production is a rule whose right-hand side
consists of a single nonterminal symbol.

Example:

S  X Y
X  A
A  B | a
B  b
Y  T
T  Y | c

4/17/2018

22

removeUnits(G) =
1. Let G' = G.
2. Until no unit productions remain in G' do:

2.1 Choose some unit production X  Y.
2.2 Remove it from G'.
2.3 Consider only rules that still remain. For

every rule Y  , where   V*, do:
Add to G' the rule X   unless it is a rule
that has already been removed once.

3. Return G'.

After removing epsilon productions and unit productions,
all rules whose right hand sides have length 1 are in
Chomsky Normal Form.

Removing Unit Productions

removeUnits(G) =
1. Let G' = G.
2. Until no unit productions remain in G' do:

2.1 Choose some unit production X  Y.
2.2 Remove it from G'.
2.3 Consider only rules that still remain. For every rule Y  ,

where   V*, do:
Add to G' the rule X   unless it is a rule that has
already been removed once.

3. Return G'.

Removing Unit Productions

Example: S  X Y
X  A
A  B | a
B  b
Y  T
T  Y | c

4/17/2018

23

Mixed Rules
removeMixed(G) =
1. Let G = G.
2. Create a new nonterminal Ta for each terminal a in .
3. Modify each rule whose right-hand side has length greater

than 1 and that contains a terminal symbol by substituting
Ta for each occurrence of the terminal a.

4. Add to G, for each Ta, the rule Ta  a.
5. Return G.

Example:

A  a
A  a B
A  BaC
A  BbC

Long Rules

removeLong(G) =
1. Let G = G.
2. For each rule r of the form:

A  N1N2N3N4…Nn, n > 2

create new nonterminals M2, M3, … Mn-1.

3. Replace r with the rule A  N1M2.

4. Add the rules:

M2  N2M3,
M3  N3M4, …
Mn-1  Nn-1Nn.

5. Return G.

Example:
A  BCDEF

4/17/2018

24

An Example

S  aACa
A  B | a
B  C | c
C  cC | 

removeEps returns:

S  aACa | aAa | aCa | aa
A  B | a
B  C | c
C  cC | c

An Example

Next we apply removeUnits:
Remove A  B. Add A  C | c.
Remove B  C. Add B  cC (B  c, already there).
Remove A  C. Add A  cC (A  c, already there).

So removeUnits returns:
S  aACa | aAa | aCa | aa
A  a | c | cC
B  c | cC
C  cC | c

S  aACa | aAa | aCa | aa
A  B | a
B  C | c
C  cC | c

4/17/2018

25

An Example
S  aACa | aAa | aCa | aa
A  a | c | cC
B  c | cC
C  cC | c

Next we apply removeMixed, which returns:

S  TaACTa | TaATa | TaCTa | TaTa
A  a | c | TcC
B  c | TcC
C  TcC | c
Ta  a
Tc  c

An Example

S  TaACTa | TaATa | TaCTa | TaTa
A  a | c | TcC
B  c | TcC
C  TcC | c
Ta  a
Tc  c

Finally, we apply removeLong, which returns:
S  TaS1 S  TaS3 S  TaS4 S  TaTa

S1  AS2 S3  ATa S4  CTa

S2  CTa
A  a | c | TcC
B  c | TcC
C  TcC | c
Ta  a
Tc  c

