
4/17/2018

1

Answer Questions about Exam2 problems
Removing Ambiguity

Chomsky, Griebach Normal Forms

(who is he foolin', thinking that there will be time to get to all of this?)

MA/CSSE 474
Theory of Computation

Recap: Derivations of The Smart Cat

• A left-most derivation is:
S  NP VP  the Nominal VP  the Adjs N VP 

the Adj N VP  the smart N VP  the smart cat VP 
the smart cat V NP  the smart cat smells NP 
the smart cat smells Nominal  the smart cat smells N 
the smart cat smells chocolate

• A right-most derivation is:
S  NP VP  NP V NP  NP V Nominal  NP V N 

NP V chocolate  NP smells chocolate 
the Nominal smells chocolate 
the Adjs N smells chocolate 
the Adjs cat smells chocolate 
the Adj cat smells chocolate 
the smart cat smells chocolate

4/17/2018

2

Recap: Ambiguity

A grammar is ambiguous iff there is at least one string
in L(G) for which G produces more than one parse
tree*.

For many applications of context-free grammars, this is
a problem.

Example: A programming language.
•If there can be two different structures for a string in
the language, there can be two different meanings.
•Not good!

* Equivalently, more than one leftmost derivation, or
more than one rightmost derivation.

Recap: Expression Grammar

E  E + E
E  E  E
E  (E)
E  id

4/17/2018

3

Recap:Inherent Ambiguity

Some CF languages have the property that every
grammar for them is ambiguous. We call such
languages inherently ambiguous.

Example:

L = {anbncm: n, m  0}  {anbmcm: n, m  0}.

Recap: Inherent Ambiguity
L = {anbncm: n, m  0}  {anbmcm: n, m  0}.

One grammar for L has these rules:

S  S1 | S2

S1  S1c | A /* Generate all strings in {anbncm}.
A  aAb | 

S2  aS2 | B /* Generate all strings in {anbmcm}.
B  bBc | 

Consider any string of the form anbncn.

It turns out that L is inherently ambiguous.

4/17/2018

4

Recap: Ambiguity and undecidability

Both of the following problems are undecidable*:

• Given a context-free grammar G, is G ambiguous?

• Given a context-free language L, is L inherently
ambiguous?

Informal definition of undecidable for the first problem:
There is no algorithm (procedure that is guaranteed to
always halt) that, given a grammar G, determines whether
G is ambiguous.

But We Can Often Reduce Ambiguity

We can get rid of:

● some  rules like B  ,

● rules with symmetric right-hand sides, e.g.,

S  SS
E  E + E

● rule sets that lead to ambiguous attachment of
optional postfixes, such as if … else ….

4/17/2018

5

A Highly Ambiguous Grammar

S 
S  SS
S  (S)

Resolving the Ambiguity with a
Different Grammar

The biggest problem is the  rule.

A different grammar for the language of balanced
parentheses:

S*  
S*  S
S  SS
S  (S)
S  ()

We'd like to have an
algorithm for removing all
-productions
except for the case where
 is actually in the
language;
then we introduce a new
start symbol and add one
-production whose left
side is that new symbol.

4/17/2018

6

Nullable Nonterminals

Examples:

S  aTa
T  

S  aTa
T  A B
A  
B  

A nonterminal X is nullable iff
either:

(1) there is a rule X  , or
(2) there is a rule X  PQR…

and P, Q, R, …
are all nullable.

Nullable Nonterminals

A nonterminal X is nullable iff either:
(1) there is a rule X  , or
(2) there is a rule X  PQ… where P, Q, …

are all nullable nonterminals.

So we compute Nullable, the set of nullable nonterminals, as
follows:

1. Set Nullable to the set of nonterminals that satisfy (1).
2. Repeat until an entire pass is made without adding

anything to Nullable
Evaluate all other nonterminals with respect to (2).
If any nonterminal satisfies (2) and is not in Nullable,

add it.

4/17/2018

7

A General Technique for Getting Rid of -Rules

Definition: a rule is modifiable iff it is of the form:

P  Q, for some nullable nonterminal Q.

removeEps(G: cfg) =
1. Let G = G.
2. Find the set Nullable of nullable nonterminals in G.
3. Repeat until G contains no modifiable rules that

haven’t been processed:
Given the rule P  Q, where Q  Nullable,

add the rule P   if it is not already present
and if    and if P  .

4. Delete from G all rules of the form X  .
5. Return G.

Then L(G) = L(G) – {}

An Example
G = {{S, T, A, B, C, a, b, c}, {a, b, c}, R, S),
R = { S  aTa

T  ABC
A  aA | C
B  Bb | C
C  c |  }

removeEps(G: cfg) =
1. Let G = G.
2. Find the set N of nullable nonterminals in G.
3. Repeat until G contains no modifiable rules that

haven’t been processed:
Given the rule P  Q, where Q  N,

add the rule P  
if it is not already present and if   

and if P  .
4. Delete from G all rules of the form X  .
5. Return G.

4/17/2018

8

What If   L?

atmostoneEps(G: cfg) =
1. G = removeEps(G).
2. If SG is nullable then /* i. e.,   L(G)

2.1 Create in G a new start symbol S*.
2.2 Add to RG the two rules:

S*  
S*  SG.

3. Return G.

