
4/17/2018

1

Remove Useless Nonterminals
Ambiguity

Normal forms

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW 9, 10 problems
• Anything else

This is quite a
"complement"

to Euclid!

4/17/2018

2

Prove the Correctness of a Grammar

AnBn = {anbn : n 0}

G = ({S, a, b}, {a, b}, R, S),

R = { S a S b
S

}

● Prove that G generates only strings in L.

● Prove that G generates all the strings in L.

Simplify Context-Free Grammars

Remove non-productive and unreachable non-terminals.

4/17/2018

3

Remove Unproductive Nonterminals
removeunproductive(G: CFG) =
1. G = G.
2. Mark every nonterminal symbol in G as unproductive.
3. Mark every terminal symbol in G as productive.
4. Until one entire pass has been made without any new

nonterminal symbol being marked do:
For each rule X in R do:

If every symbol in has been marked as
productive and X has not yet been marked as
productive then:

Mark X as productive.
5. Remove from G every unproductive symbol.
6. Remove from G every rule that contains an

unproductive symbol.
7. Return G.

Remove Unreachable Nonterminals
removeunreachable(G: CFG) =
1. G = G.
2. Mark S as reachable.
3. Mark every other nonterminal symbol as unreachable.
4. Until one entire pass has been made without any new

symbol being marked do:
For each rule X A (where A V -) in R do:

If X has been marked as reachable and A has not, then:
Mark A as reachable.

5. Remove from G every unreachable symbol.
6. Remove from G every rule with an unreachable symbol on

the left-hand side.
7. Return G.

4/17/2018

4

Parse trees capture essential structure:

1 2 3 4 5 6
S SS (S)S ((S))S (())S (())(S) (())()
S SS (S)S ((S))S ((S))(S) (())(S) (())()

1 2 3 5 4 6

S

S S

(S) (S)

(S)

Derivations and parse trees

Parse Trees

A parse tree, (derivation tree) derived from a grammar
G = (V, , R, S), is a rooted, ordered tree in which:

● Every leaf node is labeled with an element of {},

● The root node is labeled S,

● Every other node is labeled with an element
of N = V - and

● If m is a non-leaf node labeled X and the (ordered)
children of m are labeled x1, x2, …, xn, then R contains
the rule

X x1 x2 … xn.

4/17/2018

5

S

NP VP

Nominal V NP

Adjs N Nominal

Adj N

the smart cat smells chocolate

Structure in English

Generative Capacity

Because parse trees matter, it makes sense, given a
grammar G, to distinguish between:

● G’s weak generative capacity, defined to be the
set of strings, L(G), that G generates, and

● G’s strong generative capacity, defined to be the
set of parse trees that G generates.

4/17/2018

6

Algorithms Care How We Search or Derive

Algorithms for generation and recognition must be
systematic. They typically use either the leftmost
derivation or the rightmost derivation.

S

S S

(S) (S)

(S)

Derivations of The Smart Cat

• A left-most derivation is:
S NP VP the Nominal VP the Adjs N VP

the Adj N VP the smart N VP the smart cat VP
the smart cat V NP the smart cat smells NP
the smart cat smells Nominal the smart cat smells N
the smart cat smells chocolate

• A right-most derivation is:
S NP VP NP V NP NP V Nominal NP V N

NP V chocolate NP smells chocolate
the Nominal smells chocolate
the Adjs N smells chocolate
the Adjs cat smells chocolate
the Adj cat smells chocolate
the smart cat smells chocolate

4/17/2018

7

Ambiguity

A grammar is ambiguous iff there is at least one string in
L(G) for which G produces more than one parse tree*.

For many applications of context-free grammars, this is a
problem.

Example: A programming language.
•If there can be two different structures for a string in the
language, there can be two different meanings.
•Not good!

* Equivalently, more than one leftmost derivation, or more
than one rightmost derivation.

An Arithmetic Expression Grammar

E E + E
E E E
E (E)
E id

4/17/2018

8

Inherent Ambiguity

Some CF languages have the property that every
grammar for them is ambiguous. We call such
languages inherently ambiguous.

Example:

L = {anbncm: n, m 0} {anbmcm: n, m 0}.

Inherent Ambiguity
L = {anbncm: n, m 0} {anbmcm: n, m 0}.

One grammar for L has these rules:

S S1 | S2

S1 S1c | A /* Generate all strings in {anbncm}.
A aAb |

S2 aS2 | B /* Generate all strings in {anbmcm}.
B bBc |

Consider any string of the form anbncn.

It turns out that L is inherently ambiguous.

4/17/2018

9

Ambiguity and undecidability

Both of the following problems are undecidable*:

• Given a context-free grammar G, is G ambiguous?

• Given a context-free language L, is L inherently
ambiguous?

Informal definition of undecidable for the first problem:
There is no algorithm (procedure that is guaranteed to
always halt) that, given a grammar G, determines whether
G is ambiguous.

