
4/3/2018

1

Intro to Context-free Grammars

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days'

material (and exercises)
• Reading Assignments

• HW 9 problems
• Exam 2
• Anything else

Your
parents

will
probably
concur!…

4/3/2018

2

Context-free Grammars, Languages,
and PDAs

Context-free
Language

Context-free
Grammar

PDA

L

Accepts

Shorthand notation
S  
S  aT
S  bT
T  a
T  b
T  aS
T  bS
Can be abbreviated by
S   | aT | bT
T  a | b | aS | bS

4/3/2018

3

Context-free Grammar Formal Definition

A CFG G=(V, , R, S) (Each part is finite)

 is the terminal alphabet; it contains the set of
symbols that make up the strings in L(G), and

N (our textbook does not use this name, but I will) is the
nonterminal alphabet: a set of working symbols that G
uses to structure the language. These symbols
disappear by the time the grammar finishes its job and
generates a string. Note:  ∩ N = .

Rule alphabet (vocabulary): V =  ∪ N

• R: A finite set of productions of the form A  β, where
A ∊ N and β ∊ V*

G has a unique start symbol, S ∊ N

Rules are also known as productions.

Formal Definitions:
Derivations, Context-free Languages

x G y iff x = A

and A   is in R

y =   

w0 G w1 G w2 G . . . G wn is a derivation in G.

Let G* be the reflexive, transitive closure of G.

Then the language generated by G, denoted L(G), is:

{w  * : S G* w}.

A language L is context-free if there is some
context-free grammar G such that L = L(G).

4/3/2018

4

A brief side-trip into Chapter 7

Regular Grammars

Regular Grammars

In a regular grammar, every rule (production) in R
must have a right-hand side that is:
● , or
● a single terminal, or
● a single terminal followed by a single nonterminal.

Regular: S  a, S  , and T  aS

Not regular: S  aSa and S  T

4/3/2018

5

Regular Grammar Example
L = {w  {a, b}* : |w| is even} ((aa)  (ab)  (ba)  (bb))*

S  
S  aT
S  bT
T  a
T  b
T  aS
T  bS

Derive abbb
from this
grammar

Regular Languages and Regular Grammars

Theorem: A language is regular iff
it can be defined by a regular
grammar.

Proof: By two constructions.

4/3/2018

6

Regular Languages and Regular Grammars
Regular grammar  FSM:

grammartofsm(G = (V, , R, S)) =
1. Create in M a separate state for each nonterminal in V.
2. Start state is the state corresponding to S .
3. If there are any rules in R of the form X  a, for some

a  , create a new state labeled #.
4. For each rule of the form X  a Y, add a transition from

X to Y labeled a.
5. For each rule of the form X  a, add a transition from X

to # labeled a.
6. For each rule of the form X  , mark state X as

accepting.
7. Mark state # as accepting.

FSM  Regular grammar: Similar.
Essentially reverses this procedure.

S  bS, S  aT
T  aS, T  b, T  ε

Recursive Grammar Rules

• A rule is recursive iff it is X  w1Yw2, where:
Y * w3Xw4 for some w1, w2, w3, and w4 in V*.

• A grammar G is recursive iff G contains at least one
recursive rule.

• Examples: S  (S) S  (T)
T  (S)

In general, non-recursive
grammars are boring!

4/3/2018

7

Self-Embedding Grammar Rules

• A rule in a grammar G is self-embedding iff it is :
X  w1Yw2, where Y * w3Xw4 and

both w1w3 and w2w4 are in +.

• A grammar is self-embedding iff it contains at least one
self-embedding rule.

• Examples: S  aSa self-embedding

S  aS recursive but not self-embedding

S  aT
T  Sb self-embedding

What is the
difference between
self-embedding and
recursive?

Where Context-Free Grammars
Get Their Power

• If a CFG G is not self-embedding
then L(G) is regular.

• If a language L has the property
that every grammar that defines it is
self-embedding, then L is not
regular.

4/3/2018

8

Context free languages:

We care about structure.

E

E + E

id E * E

3 id id

5 7

Structure
Derivation Tree

• Consider our grammar for Bal:
S  (S) | ε | SS

• Draw a derivation tree (a.k.a. Parse tree)
for the string (())(()())

4/3/2018

9

Hints for designing context-
free grammars

• Generate concatenated regions:
A  BC

• Generate outside in:
A  aAb

• Union of two sets:
A  B | C

L = {anbncm : n, m  0}

L = { : k  0 ∧ i≤ k (ni  0)}

L = {anbm : n  m}

L = {w  {a, b}*: #a(w) = #b(w)}

kk nnnnnn bababa ...2211

4/3/2018

10

CFG for Simple Arithmetic Expressions

G = (V, , R, E), where
V = {+, *, (,), id, E},
 = {+, *, (,), id},
R = {

E  E + E
E  E  E
E  (E)
E  id
}

Derive id + id * id

BNF

• The symbol | should be read as “or”.

Example: S  aSb | bSa | SS | 

• Allow a nonterminal symbol to be any sequence
of characters surrounded by angle brackets.

Examples of nonterminals:

<program>
<variable>

A notation for writing practical context-free
grammars

4/3/2018

11

BNF for a Java Fragment

<block> ::= {<stmt-list>} |
{}

<stmt-list> ::= <stmt> |
<stmt-list> <stmt>

<stmt> ::= <block> |
while (<cond>) <stmt> |
if (<cond>) <stmt> |
do <stmt> while (<cond>);

|
<assignment-stmt>; |
return |
return <expression> |
<method-invocation>;

Spam Generation

These production rules yield 1,843,200 possible spellings.
How Many Ways Can You Spell V1@gra? By Brian Hayes
American Scientist, July-August 2007
http://www.americanscientist.org/template/AssetDetail/assetid/55592

4/3/2018

12

HTML

Item 1, which will include a sublist

First item in sublist
Second item in sublist

Item 2

A grammar:

/* Text is a sequence of elements.
HTMLtext  Element HTMLtext | 

Element  UL | LI | … (and other kinds of elements that
are allowed in the body of an HTML document)

/* The and tags must match.
UL  HTMLtext

/* The and tags must match.
LI  HTMLtext

EnglishS  NP VP
NP  the Nominal | a Nominal | Nominal |

ProperNoun | NP PP
Nominal  N | Adjs N
N  cat | dogs | bear | girl | chocolate | rifle
ProperNoun  Chris | Fluffy

Adjs  Adj Adjs | Adj
Adj  young | older | smart

VP  V | V NP | VP PP
V  like | likes | thinks | shoots | smells

PP  Prep NP
Prep  with

4/3/2018

13

Prove the Correctness of a Grammar

AnBn = {anbn : n  0}

G = ({S, a, b}, {a, b}, R, S),

R = { S  a S b
S  

}

● Prove that G generates only strings in L.

● Prove that G generates all the strings in L.

