

Your Questions?

- Previous class days' material (and exercises)
- Reading Assignments
- HW 9 problems
- Exam 2
- Anything else

Context-free Grammar Formal Definition

A CFG $G=(V, \Sigma, R, S) \quad$ (Each part is finite)
Σ is the terminal alphabet; it contains the set of symbols that make up the strings in $L(G)$, and
\mathbf{N} (our textbook does not use this name, but I will) is the nonterminal alphabet: a set of working symbols that G uses to structure the language. These symbols disappear by the time the grammar finishes its job and generates a string. Note: $\Sigma \cap \mathrm{N}=\varnothing$.

Rule alphabet (vocabulary): $\mathbf{V}=\Sigma \cup N$

- R : A finite set of productions of the form $A \rightarrow \beta$, where $\mathrm{A} \in \mathrm{N}$ and $\beta \in \mathrm{V}^{*}$ Rules are also known as productions.
G has a unique start symbol, $S \in N$

Formal Definitions: Derivations, Context-free Languages

$$
x \Rightarrow_{G} y \text { iff } x=\alpha A \beta
$$

$$
y=\alpha \gamma \beta
$$

$$
\text { and } A \rightarrow \gamma \text { is in } R
$$

$w_{0} \Rightarrow_{G} w_{1} \Rightarrow_{G} w_{2} \Rightarrow_{G} \ldots \Rightarrow_{G} w_{n}$ is a derivation in G.
Let $\Rightarrow_{G}{ }^{*}$ be the reflexive, transitive closure of $\Rightarrow{ }_{G}$.
Then the language generated by G, denoted $L(G)$, is:

$$
\left\{w \in \Sigma^{*}: S \Rightarrow_{G}^{*} w\right\} .
$$

A language L is context-free if there is some
context-free grammar G such that $L=L(G)$.

Regular Grammars

In a regular grammar, every rule (production) in R must have a right-hand side that is:

- ε, or
- a single terminal, or
- a single terminal followed by a single nonterminal.

Regular: $S \rightarrow a, S \rightarrow \varepsilon$, and $T \rightarrow a S$

Not regular: $S \rightarrow$ aSa and $S \rightarrow T$

Regular Languages and Regular Grammars

Theorem: A language is regular iff it can be defined by a regular grammar.

Proof: By two constructions.

Regular Languages and Regular Grammars

Regular grammar \rightarrow FSM:
$\operatorname{grammartofsm}(G=(V, \Sigma, R, S))=$

1. Create in M a separate state for each nonterminal in V.
2. Start state is the state corresponding to S.
3. If there are any rules in R of the form $X \rightarrow a$, for some $a \in \Sigma$, create a new state labeled \#.
4. For each rule of the form $X \rightarrow a Y$, add a transition from X to Y labeled a.
5. For each rule of the form $X \rightarrow a$, add a transition from X to \# labeled a.
6. For each rule of the form $X \rightarrow \varepsilon$, mark state X as
accepting.
7. Mark state \# as accepting.
$\mathrm{S} \rightarrow \mathrm{bS}, \mathrm{S} \rightarrow \mathrm{aT}$ $\mathrm{T} \rightarrow \mathrm{aS}, \mathrm{T} \rightarrow \mathrm{b}, \mathrm{T} \rightarrow \varepsilon$

FSM \rightarrow Regular grammar: Similar.
Essentially reverses this procedure.

Recursive Grammar Rules

- A rule is recursive iff it is $X \rightarrow w_{1} Y w_{2}$, where:

$$
Y \Rightarrow^{*} w_{3} X w_{4} \text { for some } w_{1}, w_{2}, w_{3}, \text { and } w_{4} \text { in } V^{*}
$$

- A grammar G is recursive iff G contains at least one recursive rule.
- Examples:

$$
S \rightarrow(S)
$$

$$
S \rightarrow(T)
$$

$$
T \rightarrow(S)
$$

In general, non-recursive grammars are boring!

Self-Embedding Grammar Rules

- A rule in a grammar G is self-embedding iff it is : $X \rightarrow w_{1} Y w_{2}$, where $Y \Rightarrow{ }^{*} w_{3} X w_{4}$ and both $w_{1} w_{3}$ and $w_{2} w_{4}$ are in Σ^{+}. What is the difference between self-embedding and recursive?
- A grammar is self-embedding iff it contains at least one self-embedding rule.
- Examples: $S \rightarrow$ aSa self-embedding
$S \rightarrow$ aS recursive but not self-embedding
$S \rightarrow \mathrm{a} T$
$T \rightarrow \mathrm{Sb} \quad$ self-embedding

Where Context-Free Grammars Get Their Power

- If a CFG G is not self-embedding then $L(G)$ is regular.
- If a language L has the property that every grammar that defines it is self-embedding, then L is not regular.

Structure

Context free languages:
We care about structure.

Derivation Tree

- Consider our grammar for Bal:

$$
\mathbf{S} \rightarrow(\mathbf{S})|\varepsilon| \mathbf{S S}
$$

- Draw a derivation tree (a.k.a. Parse tree) for the string $(())(()())$

Hints for designing contextfree grammars

- Generate concatenated regions:
$A \rightarrow B C$
- Generate outside in:
$A \rightarrow a A b$
- Union of two sets:
$\mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{C}$

$$
\begin{aligned}
L & =\left\{a^{n} b^{n} \mathrm{c}^{m}: n, m \geq 0\right\} \\
L & =\left\{a^{n^{n}} b^{b^{n}} a^{n^{n}} b^{n_{2}} \ldots a^{n^{n}} b^{n_{x}}: k \geq 0 \wedge \forall i \leq k\left(n_{i} \geq 0\right)\right\} \\
L & =\left\{a^{n} b^{m}: n \neq m\right\} \\
L & =\left\{w \in\{a, b\}^{*}: \#_{\mathrm{a}}(w)=\#_{\mathrm{b}}(w)\right\}
\end{aligned}
$$

BNF

A notation for writing practical context-free grammars

- The symbol | should be read as "or".

Example: $S \rightarrow \mathrm{aSb}|\mathrm{bSa}| S S \mid \varepsilon$

- Allow a nonterminal symbol to be any sequence of characters surrounded by angle brackets.

Examples of nonterminals:
<program>
<variable>
<stmt> ::= <block> |
while (<cond>) <stmt> |
if (<cond>) <stmt> |
do <stmt> while (<cond>);
I
<assignment-stmt>; | return | return <expression> | <method-invocation>;

Spam Generation

<spc> \rightarrow space $|\cdot|-\left|_|=|:|*| /|:| \text { empty }\right.$
<spc> \rightarrow space $|\cdot|-\left|_|=|:|*| /|:| \text { empty }\right.$
<Word> \rightarrow <V> <spc> <l> <spc> <A> <spc> <G> <spc> <R> <spc> <A>
<Word> \rightarrow <V> <spc> <l> <spc> <A> <spc> <G> <spc> <R> <spc> <A>
$<\mathrm{V}>\rightarrow \mathrm{V}|\mathrm{v}| \mathrm{V}$
$<\mathrm{V}>\rightarrow \mathrm{V}|\mathrm{v}| \mathrm{V}$

$\langle\mathrm{A}\rangle \rightarrow \mathrm{A}|\mathrm{a}| / \backslash \mid$ @ \mid ^ $|\AA| \mathrm{A}|\AA| \AA|\AA \AA|$ á \mid â \mid ä \mid à \mid å \mid ã
$\langle\mathrm{A}\rangle \rightarrow \mathrm{A}|\mathrm{a}| / \backslash \mid$ @ \mid ^ $|\AA| \mathrm{A}|\AA| \AA|\AA \AA|$ á \mid â \mid ä \mid à \mid å \mid ã
$\langle\mathrm{G}\rangle \rightarrow \mathrm{G}|\mathrm{g}| \&|6| 9$
$\langle\mathrm{G}\rangle \rightarrow \mathrm{G}|\mathrm{g}| \&|6| 9$
$\langle\mathrm{R}\rangle \rightarrow \mathrm{R}|\mathrm{r}|$ (8
$\langle\mathrm{R}\rangle \rightarrow \mathrm{R}|\mathrm{r}|$ (8

