
4/2/2018

1

MA/CSSE 474
Theory of Computation

Summary of regular Language
Algorithms

Intro to Grammars

Context-free Grammars (CFG)

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW 8 or 9 problems
• Exam 2
• Anything else

This one
has so

many levels
…

4/2/2018

2

Summary of algorithms we have so far

● Operate on FSMs without altering the language that is
accepted:

● ndfsmtodfsm(M: NDFSM)
● minDFSM (M:DFSM)
● buildFSMcanonicalform(M:FSM)

The next few slides are here for reference.
I do not expect to spend class time on them.

You should know how to do all of them, but
during class exercises and homework you may
simply "call" any of them as part of your decision
procedures.

Summary of Algorithms
● Compute functions of languages defined as FSMs:

● Given FSMs M1 and M2, construct a FSM M3 such that
L(M3) = L(M2)  L(M1).

● Given FSMs M1 and M2, construct a new FSM M3 such that
L(M3) = L(M2) L(M1).

● Given FSM M, construct an FSM M* such that
L(M*) = (L(M))*.

● Given a DFSM M, construct an FSM M* such that
L(M*) = L(M).

● Given two FSMs M1 and M2, construct an FSM M3 such that
L(M3) = L(M2)  L(M1).

● Given two FSMs M1 and M2, construct an FSM M3 such that
L(M3) = L(M2) - L(M1).

● Given an FSM M, construct an FSM M* such that
L(M*) = (L(M))R.

● Given an FSM M, construct an FSM M* that accepts
letsub(L(M)).

4/2/2018

3

Algorithms, Continued

● Converting between FSMs and regular expressions:
● Given a regular expression , construct an FSM M

such that:
L() = L(M)

● Given an FSM M, construct a regular expression 
such that:

L() = L(M)

● Algorithms that implement operations on languages
defined by regular expressions: any operation that
can be performed on languages defined by FSMs can
be implemented by converting all regular expressions to
equivalent FSMs and then executing the appropriate
FSM algorithm.

Algorithms, Continued

● Converting between FSMs and regular grammars:

● Given a regular grammar G, construct an FSM M
such that:

L(G) = L(M)

● Given an FSM M, construct a regular grammar G
such that:

L(G) = L(M).

We have not yet discussed regular grammars.
They are in the reading assignment for tomorrow.
This is here for completeness.

4/2/2018

4

Answering Specific Questions

Given two regular expressions 1 and 2, is:

(L(1)  L(2)) – {}  ?

1. From 1, construct an FSM M1 such that L(1) = L(M1).
2. From 2, construct an FSM M2 such that L(2) = L(M2).
3. Construct M such that L(M) = L(M1)  L(M2).
4. Construct M such that L(M) = {}.
5. Construct M such that L(M) = L(M) - L(M).
6. If L(M) is empty return False; else return True.

For practice later: Given two regular expressions 1 and
2, are there at least 3 strings that are generated by both
of them?

Context-Free Grammars

CFG ≡ BNF (mostly)
Chapter 11

For regular languages, we first discussed
language recognition (FSM), then language

description (reg. exp.)
For context-free languages, we first discuss
language generation (CFG), then language

recognition (PDA)

4/2/2018

5

Languages and Machines

Rewrite Systems and Grammars

A rewrite system (a.k.a. production system or rule-based
system) is:

● a list of rules, and
● an algorithm for applying them.

Each rule has a left-hand side (lhs) and a right hand side (rhs)

Example rules:

S  aSb
aS  
aSb  bSabSa

4/2/2018

6

Simple-rewrite algorithm

simple-rewrite(R: rewrite system, w: initial string) =

1. Set working-string to w.

2. Until told by R to halt do:
Match the lhs of some rule against some part of
working-string.

Replace the matched part of working-string with the
rhs of the rule that was matched.

3. Return working-string.

lhs means "left-hand side" rhs means "right-hand side"

An Example
w = SaS

Rules:
[1] S  aSb
[2] aS  

● What order to apply the rules?

● When to quit?

4/2/2018

7

String Generation from a Grammar

• Multiple rules may match.

Grammar: S  aSb, S  bSa, and S  

Derivation so far: S  aSb  aaSbb 

Three choices for the next step:

S  aSb  aaSbb  aaaSbbb (using rule 1),
S  aSb  aaSbb  aabSabb (using rule 2),
S  aSb  aaSbb  aabb (using rule 3).

Generating Many Strings

• One rule may match in more than one position in the
string.

Grammar: S  aTTb, T  bTa, and T  

Derivation so far: S  aTTb 

Two choices for which nonterminal to replace in the
next step:

S  aTTb  abTaTb 
S  aTTb  aTb 

S  aTTb  aTbTab 
S  aTTb  aTb 

Replace the first T

Replace the second T

4/2/2018

8

When to Stop
We may stop when:

1. The working string no longer contains any
nonterminal symbols (including, when the
working string is ).

In this case, we say that the working string is
generated by the grammar.

Example:

S  aSb  aaSbb  aabb

When to Stop
May stop when:

2. There are nonterminal symbols in the working string but
none of them is the left-hand side of any rule in the
grammar.

In this case, we have a blocked or non-terminated derivation
but no generated string.

Example:

Rules: S  aSb, S  bTa, and S  

Derivation: S  aSb  abTab  [blocked]

4/2/2018

9

When to Stop

It is possible that neither (1) nor (2) is achieved.

Example:

G contains only the rules S  Ba and B  bB, with S the start
symbol.

Then all derivations proceed as:

S  Ba  bBa  bbBa  bbbBa  bbbbBa  ...

Context-free Grammars, Languages,
and PDAs

Context-free
Language

Context-free
Grammar

PDA

Generates

Accepts

4/2/2018

10

Context-free Grammar Formal Definition

A CFG G=(V, , R, S) (Each part is finite)

 is the terminal alphabet; it contains the set of
symbols that make up the strings in L(G), and

N (our textbook does not use this name, but I will) is the
nonterminal alphabet: a set of working symbols that G
uses to structure the language. These symbols
disappear by the time the grammar finishes its job and
generates a string. Note:  ∩ N = .

Rule alphabet (vocabulary): V =  ∪ N

• R: A finite set of productions of the form A  β, where
A ∊ N and β ∊ V*

G has a unique start symbol, S ∊ N

Rules are also known as productions.

Context-Free Rules

No restrictions on the form of the right-hand side.

S  abDeFGab

But we require single non-terminal on left-hand side.

S 

but not ASB  or aS 

4/2/2018

11

Write CFGs that Generate
These Languages

AnBn

BAL (Balanced Parentheses language)

{ambn : m>= n}

Formal Definitions:
Derivations, Context-free Languages

x G y iff x = A

and A   is in R

y =   

w0 G w1 G w2 G . . . G wn is a derivation in G.

Let G* be the reflexive, transitive closure of G.

Then the language generated by G, denoted L(G), is:

{w  * : S G* w}.

A language L is context-free if there is some
context-free grammar G such that L = L(G).

4/2/2018

12

A brief side-trip into Chapter 7

Regular Grammars

Regular Grammars

In a regular grammar, every rule (production) in R
must have a right-hand side that is:
● , or
● a single terminal, or
● a single terminal followed by a single nonterminal.

Regular: S  a, S  , and T  aS

Not regular: S  aSa and S  T

4/2/2018

13

L = {w  {a, b}* : |w| is even}
((aa)  (ab)  (ba)  (bb))*

S  
S  aT
S  bT
T  a
T  b
T  aS
T  bS

Regular Grammar Example

Derive
abbb from
this
grammar

Regular Languages and Regular
Grammars

Theorem: A language is regular iff it
can be defined by a regular grammar.

Proof: By two constructions, one for
each direction.

4/2/2018

14

Regular Languages and Regular
Grammars

Regular grammar  FSM:
grammartofsm(G = (V, , R, S)) =
1. In M, Create a separate state for each nonterminal in V.
2. Start state is the state corresponding to S .
3. If there are any rules in R of the form X  a, for some a  ,

create a new state labeled #.
4. For each rule of the form X  a Y, add a transition from

X to Y labeled a.
5. For each rule of the form X  a, add a transition from X

to # labeled a.
6. For each rule of the form X  , mark state X as accepting.
7. Mark state # as accepting.

FSM  Regular grammar: Similar.
Essentially reverses this procedure.

S  bS, S  aT
T  aS, T  b, T  ε

