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MA/CSSE 474
Theory of Computation

Closure properties of Regular 
Languages

Pumping Theorem

Your Questions?
• Previous class days' 

material?

• Reading 
Assignments?

• HW 6 or 7 
problems?

• Anything else?
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To Show that a Language L is Regular

We can do any of the following:

Construct a DFSM that accepts L.

Construct a NDFSM that accepts L.

Construct a regular expression that defines L.

Construct a regular grammar that generates L.

Show that there are finitely many equivalence classes for L.

Show that L is finite.

Use one or more of the closure properties.

Closure Properties of Regular Languages

● Union

● Concatenation

● Kleene Star

● Complement

● Intersection

● Difference

● Reverse

● Letter Substitution

The first three are easy:
definition of regular expressions.

We will briefly discuss the ideas of how 
to do Complement and Reverse.

Intersection:  HW5, or ...

Difference 

You should read about Letter 
Substitution in the textbook.
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Don’t Try to Use Closure Backwards

One Closure Theorem:

If L1 and L2 are regular, then so is 

L =     L1  L2

But if L1  L2 is regular, what can we say about L1 and L2?

L = L1  L2

ab = ab  (a  b)*           (L1 and L2 are regular)

ab = ab  {anbn, n  0}     (they may not be regular)

Don’t Try to Use Closure Backwards

Another Closure Theorem:

If L1 and L2 are regular, then so is 

L = L1 L2

But if L2 is not regular, what can we say about L?

L =    L1 L2

{abanbn : n  0} = {ab} {anbn : n  0} 

L(aaa*) = {a}* {ap: p is prime}
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Showing that a Language is Not Regular

Every regular language can be accepted 
by some FSM.

It can only use a finite amount of memory 
to record essential properties.

Example:
AnBn = {anbn, n  0}  is not regular

Showing that a Language is Not Regular

The only way to generate/accept an infinite language with a 
finite machine/description is to use: 
• Kleene star (in regular expressions), or 
• cycles (in automata).  

This forces some kind of simple repetitive cycle within the 
strings.

Example:
ab*a generates aba, abba, abbba, abbbba, etc.

Example:
{an : n  1 is a prime number} is not regular. 
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Exploiting the Repetitive Property

If an FSM with n states accepts at least one string of 
length  n, how many strings does it accept?

L = bab*ab

b a b a b
x y z

xy*z must be in L.

So L includes: baab, babab, babbab, babbbbbbbbbbab

Theorem – Long Strings

Theorem: Let M = (K, , , s, A) be any DFSM.  If M
accepts any string of length |K| or greater, then that 
string will force M to visit some state more than once 
(thus traversing at least one loop or cycle).  

Proof: M must start in one of its states.  
Each time it reads an input character, it visits some 
state.  So, in processing a string of length n, M does a 
total of 
n + 1 state visits.  

If n+1 > |K|, then, by the pigeonhole principle, some 
state must get more than one visit.  

So, if n  |K|, then M must visit at least one state more 
than once.  
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The Pumping Theorem* for Regular Languages

If L is regular, then every long string in L is "pumpable".  
Formally, if L is regular, then 

k  1 such that
( strings w  L, 

(|w|  k  →
( x, y, z (w = xyz,

|xy|  k,
y  , and
q  0 (xyqz is in L)))))

• a.k.a. "the pumping lemma".  
We will use the terms interchangeably.

• What if L has no strings whose lengths are greater 
than k?

Write this in 
contrapositive 
form

Using The Pumping Theorem to show that 
L is not Regular:

We use the contrapositive of the theorem: 
If some long enough string in L is not "pumpable", 
then L is not regular. 

What we need to show in order to show L non-regular:
(k  1 

( a string w  L
(|w|  k and 

( x, y, z ((w = xyz ∧ |xy|  k ∧ y  ) → 
 q  0 (xyqz ∉ L))))))

→ L is not regular .

Before our next class meeting:  
Be sure that you are convinced that this 
really is the contrapositive of the 
pumping theorem.  
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A way to think of it: adversary argument
(following J.E. Hopcroft and J.D.Ullman) 

1. Choose the language L you want to prove non-regular.

2. The "adversary" picks  k, the constant mentioned in the theorem.  

3. We must be prepared for any positive integer to be picked, but once it is 
chosen, the adversary cannot change it.

4. We select a string wL (whose length is at least k) that cannot be pumped".

5. The adversary breaks w into w=xyz, subject to constraints |xy|  k and y  .  

6. Our choice of w must take into account that any such x and y can be chosen.

7. All we must do is  produce a single number q0 such that xyqz L.

Note carefully what we get to choose and 
what we do not get to choose.

Example: {anbn: n  0} is not Regular
k is the number from the Pumping Theorem.
We don't get to choose it.

Choose w to be ak/2bk/2 (“long enough”).

1 2
a a a a a … a a a a a b b b b … b b b b b b

x y z

Adversary chooses  x, y, z with the required properties:
|xy|  k, 
y  ,

We must show ∃ q  0 (xyqz ∉ L).

Three cases to consider:
● y entirely in region 1:

● y partly in region 1, partly in 2:

● y entirely in region 2: 

For each case, we must 
find at least one value 
of q that takes xyqz
outside the language L. 

The most common q 
values to use are q=0 
and q=2.
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A Complete Proof (read later)
We prove that L = {anbn: n  0} is not regular

If L were regular, then there would exist some k such that any string w where |w|  k must 
satisfy the conditions of the theorem.  Let w = ak/2bk/2.  Since |w|  k, w must satisfy 
the conditions of the pumping theorem.  So, for some x, y, and z, w = xyz, |xy|  k, y  , 
and q  0, xyqz is in L.  We show that no such x, y, and z exist.  There are 3 cases for 
where y could occur:  We divide w into two regions:

aaaaa…..aaaaaa| bbbbb…..bbbbbb
1       |              2                

So y is in one of the following :
● (1):  y = ap for some p.  Since y  , p must be greater than 0.  Let q = 2.  

The resulting string is ak+pbk.   But this string is not in L, since it has more a’s than b’s.    
● (2):  y = bp for some p.  Since y  , p must be greater than 0.  Let q = 2.  The resulting 

string is akbk+p.   But this string is not in L, since it has more b’s than a’s.  
● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting 

string will have interleaved a’s and b’s, and so is not in L.

There exists one long string in L for which no pumpable x, y, z exist.  So L is not 
regular.

What You Should Write (read these details later)
We prove that L = {anbn: n  0} is not regular

Let w = ak/2bk/2.  (If not completely obvious, as in this case, show that w is in 
fact in L.)

aaaaa…..aaaaaa| bbbbb…..bbbbbb
1 |              2

There are three possibilities for y:
● (1):  y = ap for some p.  Since y  , p must be greater than 0.  Let q = 2.  

The resulting string is ak+pbk.   But this string is not in L, since it has 
more a’s than b’s.  .  

● (2):  y = bp for some p.  Since y  , p must be greater than 0.  Let q = 2.  
The resulting string is akbk+p.   But this string is not in L, since it has 
more b’s than a’s.  

● (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The resulting 
string will have interleaved a’s and b’s, and so is not in L.

Thus L is not regular.


