

Recap: Kleene's Theorem

Finite state machines and regular expressions define the same class of languages.

To prove this, we showed:
Theorem: Any language that can be defined by a regular expression can be accepted by some FSM and so is regular. Done Day 11.

Theorem: Every regular language (i.e., every language that can be accepted by some DFSM) can be defined with a regular expression. Done Day 12

Recap: DFSM \rightarrow Reg. Exp.

$R_{i j k}$ is the set of all strings that take M from q_{i} to q_{j} without passing through any intermediate states numbered higher than k .
It can be computed recursively:
Base cases ($k=0$):

- If $i \neq j, R_{i j 0}=\left\{a \in \Sigma: \delta\left(q_{i}, a\right)=q_{j}\right\}$
- If $i=j, R_{\text {iio }}=\left\{a \in \Sigma: \delta\left(q_{i}, a\right)=q_{i}\right\} \cup\{\varepsilon\}$

Recursive case ($k>0$):
$R_{i \mathrm{ijk}}$ is $\mathrm{R}_{\mathrm{ij}(\mathrm{k}-1)} \cup \mathrm{R}_{\mathrm{ik}(\mathrm{k}-1)}\left(\mathrm{R}_{\mathrm{kk}(\mathrm{k}-1)}\right)^{*} \mathrm{R}_{\mathrm{kj}(\mathrm{k}-1)}$
We showed by induction that each R_{ijk} is defined by some regular expression $r_{i j k}$.

DFA \rightarrow Reg. Exp. Proof pt. 3

We showed by induction that each R_{ijk} is defined by some regular expression r_{ijk}.

In particular, for all $q_{j} \in A$, there is a regular expression $r_{1 j n}$ that defines $R_{1 j n}$.

Then $L(M)=L\left(r_{1,1 n} \cup \ldots \cup r_{1 j_{p} n}\right)$, where $A=\left\{q_{j_{1}}, \ldots, q_{j_{p}}\right\}$

An Example $\left(r_{j \mathrm{jk}}\right.$ is $\left.r_{\mathrm{ij}(k-1)} \cup \mathrm{r}_{\mathrm{ik}(k-1)}\left(\mathrm{r}_{\mathrm{kk}(k-1)}\right){ }^{*} \mathrm{r}_{\mathrm{k}(k-1)}\right)$

	$\rightarrow a_{1}$		
	$\mathrm{k}=0$	$\mathrm{k}=1$	$\mathrm{k}=2$
$\mathrm{r}_{11 \mathrm{k}}$	ε	ε	(00)*
$\mathrm{r}_{12 \mathrm{k}}$	0	0	$0(00)^{*}$
$\mathrm{r}_{13 \mathrm{k}}$	1	1	0*1
$\mathrm{r}_{21 \mathrm{k}}$	0	0	$0(00)^{*}$
$\mathrm{r}_{22 \mathrm{k}}$	ε	$\varepsilon \cup 00$	(00)*
$\mathrm{r}_{23 \mathrm{k}}$	1	$1 \cup 01$	0*1
$\mathrm{r}_{31 \mathrm{k}}$	\varnothing	\varnothing	$(0 \cup 1)(00)^{*} 0$
$\mathrm{r}_{32 \mathrm{k}}$	$0 \cup 1$	$0 \cup 1$	$(0 \cup 1)(00)^{*}$
$\mathrm{r}_{33 \mathrm{k}}$	ε	ε	$\varepsilon \cup(0 \cup 1) 0^{*} 1$

Aside: Regular Expressions in Perl

Syntax	Name	Description
$a b c$	Concatenation	Matches a, then b, then c, where a, b, and c are any regexs
$a\|b\| c$	Union (Or)	Matches a or b or c, where a, b, and c are any regexs
a^{*}	Kleene star	Matches 0 or more a 's, where a is any regex
${ }^{\text {a }}$	At least one	Matches 1 or more a 's, where a is any regex
a ?		Matches 0 or $1 a^{\prime}$'s, where a is any regex
$a\{n, m\}$	Replication	Matches at least n but no more than $m a$'s, where a is any regex
a^{*} ?	Parsimonious	Turns off greedy matching so the shortest match is selected
$a+$?	"	"
.	Wild card	Matches any character except newline
\wedge	Left anchor	Anchors the match to the beginning of a line or string
\$	Right anchor	Anchors the match to the end of a line or string
[a-z]		Assuming a collating sequence, matches any single character in range
[$\$ a-z] & & Assuming a collating sequence, matches any single character not in range \hline \d & Digit & Matches any single digit, i.e., string in [0-9] \hline ID & Nondigit & Matches any single nondigit character, i.e., [^0-9] \hline lw & Alphanumeric & Matches any single "word" character, i.e., [a-zA-Z0-9] \hline W W & Nonalphanumeric & Matches any character in [^ $\mathrm{a}-\mathrm{zA}-\mathrm{Z0}-9$]		
Is	White space	Matches any character in [space, tab, newline, etc.]

Examples

Email addresses

lb[A-Za-z0-9_\%-]+@[A-Za-z0-9_\%-]+(\.[A-Za-z]+)\{1,4\}|b

WW

${ }^{\wedge}\left([a b]^{*}\right) \backslash 1 \$$
Duplicate words
Find them
$\mathrm{lb}([\mathrm{A}-\mathrm{Za}-\mathrm{z}]+) \backslash \mathrm{s}+\backslash 1 \backslash \mathrm{~b}$
Delete them
\$text $=\sim s / \mathrm{bb}([A-Z a-z]+) \backslash s+\backslash 1 \backslash b / 1 / g ;$

How Many Regular Languages?

- Given an alphabet, Σ, how many different languages over Σ ? How many of those languages are regular?
- Background: since
- Σ is finite,
- each string in Σ^{*} is finite, and
- there is no limit to the length of the strings in Σ^{*}, the number of different strings in Σ^{*} is countably infinite (think about how to enumerate them).
- Is the set of subsets of Σ^{*} countable?
- It suffices to work with $\Sigma=\{a\}$, a single-symbol alphabet.

How Many Regular Languages?

Theorem: The number of regular languages over any nonempty alphabet Σ is countably infinite .

Proof:

- Upper bound on number of regular languages: number of DFSMs (or regular expressions).
- Lower bound on number of regular languages:
$\{a\},\{a a\},\{a a a\},\{a a a a\},\{a a a a a\},\{a a a a a\}, \ldots$
are all regular. That set is countably infinite.

Are Regular or Nonregular Languages More Common?

There is a countably infinite number of regular languages.

There is an uncountably infinite number of languages over any nonempty alphabet Σ.

So there are many more nonregular languages than regular ones.

Languages: Regular or Not?

Recall our intuition:

$a^{*} b^{*}$ is regular. $\quad A^{n} B^{n}=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not.
$\left\{w \in\{a, b\}^{*}\right.$: every a is immediately followed by $\left.b\right\}$ is regular.
$\left\{w \in\{a, b\}^{*}\right.$: every a has a matching b somewhere $\}$ is not regular.

How do we

- show that a language is regular?
- show that a language is not regular?

Showing that a Language is Regular

Theorem: Every finite language L is regular.
Proof: If L is the empty set, then it is defined by the regular expression \varnothing and so is regular.

If L is a nonempty finite language, composed of the strings $s_{1}, s_{2}, \ldots s_{n}$ for some positive integer n, then it is defined by the regular expression:
$s_{1} \cup s_{2} \cup \ldots \cup s_{n}$

Finiteness - Theoretical vs. Practical

Every finite language is regular.
The size of the language doesn't matter.

Parity	Soc. Sec. \# Checking

But, from an implementation point of view, it matters!.
When is an FSM a good way to encode the facts about a language?

FSM's are good at looking for repeating patterns. They don't help much when the language is just a set of unrelated strings.

To Show that a Language L is Regular

We can do any of the following:
Construct a DFSM that accepts L.
Construct a NDFSM that accepts L.
Construct a regular expression that defines L.
Construct a regular grammar that generates L.
Show that there are finitely many equivalence classes under \approx_{L}.
Show that L is finite.
Use one or more of the closure properties.

Don't Try to Use Closure Backwards

One Closure Theorem:

If L_{1} and L_{2} are regular, then so is

$$
f=L_{1} \cap L_{2}
$$

But if $L_{1} \cap L_{2}$ is regular, what can we say about L_{1} and L_{2} ?

$$
\underline{L}=L_{1} \cap L_{2}
$$

$$
\begin{aligned}
& a b=a b \cap(a \cup b)^{*} \quad\left(L_{1} \text { and } L_{2}\right. \text { are regular) } \\
& a b=a b \cap\left\{a^{n} b^{n}, n \geq 0\right\} \quad \text { (may not be regular) }
\end{aligned}
$$

Don't Try to Use Closure Backwards

```
Another Closure Theorem:
    If L}\mp@subsup{L}{1}{}\mathrm{ and }\mp@subsup{L}{2}{}\mathrm{ are regular, then so is
    L=L_L
But if L}\mp@subsup{L}{2}{}\mathrm{ is not regular, what can we say about L?
    L= L' L 
    {aba\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}:n\geq0}={ab}{\mp@subsup{a}{}{n}\mp@subsup{b}{}{n}:n\geq0}
    L(aaa*) = {a\mp@subsup{}}{}{*}{\mp@subsup{a}{}{p}:p\mathrm{ is prime }}
```


Showing that a Language is Not Regular

Every regular language can be accepted by some FSM M.

M can only use a finite amount of memory to record essential properties.

Example:

$\mathrm{A}^{n} \mathrm{~B}^{n}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n}, n \geq 0\right\}$ is not regular

Showing that a Language is Not Regular

The only way to generate/accept an infinite language with a finite description is to use:

- Kleene star (in regular expressions), or
- cycles (in automata).

This forces a simple repetitive cycle within the strings.
Example:
$a b * a$ generates $a b a, ~ a b b a, ~ a b b b a, ~ a b b b b a$, etc.
Example:
$\left\{\mathrm{a}^{n}: n \geq 1\right.$ is a prime number $\}$ is not regular.

Exploiting the Repetitive Property

If an FSM with n states accepts at least one string of length $\geq n$, how many strings does it accept?
$L=b a b * a b$
$\frac{\mathrm{b} \mathrm{a}}{x} \frac{\mathrm{~b}}{y} \frac{\mathrm{~b} \mathrm{~b} \mathrm{~b} \mathrm{a} \mathrm{b}}{z}$
$x y^{*} z$ must be in L.
So L includes: baab, babab, babbab, babbbbbbbbbbab

Theorem - Long Strings

Theorem: Let $M=(K, \Sigma, \delta, s, A)$ be any DFSM. If M accepts any string of length $|K|$ or greater, then that string will force M to visit some state more than once (thus traversing at least one loop).

Proof: M must start in one of its states.
Each time it reads an input character, it visits some state. So, in processing a string of length n, M does a total of $n+1$ state visits.

If $n+1>|K|$, then, by the pigeonhole principle, some state must get more than one visit.

So, if $n \geq|K|$, then M must visit at least one state more than once.

The Pumping Theorem* for Regular Languages

If L is regular, then every long string in L is "pumpable".
Formally, if L is regular, then
$\exists k \geq 1$ such that
(\forall strings $w \in L$,

Write this

 in$$
\begin{aligned}
&(|w| \geq k \rightarrow \text { contrapo } \\
&(\exists x, y, z(w=x y z, \text { tive form } \\
&|x y| \leq k, \\
& y \neq \varepsilon \text { and } \\
&\left.\left.\left.\left.\forall q \geq 0\left(x y^{q} z \text { is in } L\right)\right)\right)\right)\right)
\end{aligned}
$$

- a.k.a. "the pumping lemma".

We will use the terms interchangeably.

- What if L has no strings whose lengths are greater than k ?

```
Use The Pumping Theorem to show that
    L is not Regular:
We use the contrapositive of the theorem:
If some long enough string in \(L\) is not "pumpable", then \(L\) is not regular.
What we need to show in order to show L non-regular:
( \(\forall k \geq 1\)
\((\exists\) a string \(w \in L\)
( \(|w| \geq k\) and
\[
(\forall x, y, z((w=x y z \wedge|x y| \leq k \wedge y \neq \varepsilon) \rightarrow
\]
\[
\left.\left.\left.\left.\exists q \geq 0\left(x y^{q} z \notin L\right)\right)\right)\right)\right)
\]
\(\rightarrow L\) is not regular .
Before our next class meeting:
Be sure that you are convinced that this really is the contrapositive of the pumping theorem.
```


A way to think of it: adversary argument (following J.E. Hopcroft and J.D.UlIman)

1. Choose the language L you want to prove non-regular.
2. The "adversary" picks k, the constant mentioned in the theorem. We must be prepared for any positive integer to be picked, but once it is chosen, the adversary cannot change it.
3. We select a string $w \in L$ (whose length is at least k) that cannot be "pumped".
4. The adversary breaks w into $w=x y z$, subject to the constraints $|x y| \leq k$ and $y \neq \varepsilon$. Our choice of w must take into account that any such x and y can be chosen.
5. All we must do is produce a single number $q \geq 0$ such that $x y^{q} Z \notin L$.

Note carefully what we get to choose and what we do not get to choose.

Example: $\left\{a^{n} \mathbf{b}^{n}: n \geq 0\right\}$ is not Regular

k is the number from the Pumping Theorem.
We don't get to choose it.
Choose w to be $\mathrm{a}^{\lceil k / 2\rceil} \mathrm{b}^{\lceil k / 2\rceil}$ ("long enough").

Adversary chooses x, y, z with the required properties:
$|x y| \leq k$,
$y \neq \varepsilon$,
We must show $\exists q \geq 0\left(x y^{q} z \notin L\right)$.
Three cases to consider:

- y entirely in region 1 :
- y partly in region 1 , partly in 2 :

For each case, we must find at least one value of q that takes $x y^{q} z$ outside the language L .
The most common q values to use are $\mathrm{q}=0$ and $q=2$.

- y entirely in region 2 :

A Complete Proof

We prove that $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{n}: n \geq 0\right\}$ is not regular
If L were regular, then there would exist some k such that any string w where $|w|$ $\geq k$ must satisfy the conditions of the theorem. Let $w=\mathrm{a}^{\mid k / 27} \mathrm{~b}^{[k / 2]}$. Since $|w|$ $\geq k, w$ must satisfy the conditions of the pumping theorem. So, for some x, y, and $z, w=x y z,|x y| \leq k, y \neq \varepsilon$, and $\forall q \geq 0, x y^{q} z$ is in L. We show that no such x, y, and z exist. There are 3 cases for where y could occur: We divide w into two regions:

aaaaa.....aaaaaa	\| bbbbb.....bbbbbb
1	\mid

So y can fall in:

- (1): $y=\mathrm{a}^{p}$ for some p. Since $y \neq \varepsilon, p$ must be greater than 0 . Let $q=2$. The resulting string is $\mathrm{a}^{k+p} \mathrm{~b}^{k}$. But this string is not in L, since it has more a's than b's.
- (2): $y=\mathrm{b}^{p}$ for some p. Since $y \neq \varepsilon, p$ must be greater than 0 . Let $q=2$. The resulting string is $\mathrm{a}^{k} \mathrm{~b}^{k+p}$. But this string is not in L, since it has more b's than a's.
- (1, 2): $y=a^{p} b^{r}$ for some non-zero p and r. Let $q=2$. The resulting string will have interleaved a's and b's, and so is not in L.

There exists one long string in L for which no pumpable x, y, z exist. So L is not regular.

What You Should Write (read these details later)

We prove that $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular
Let $w=a^{[k / 27} \mathrm{b}^{[k / 2\rceil}$. (If not completely obvious, as in this case, show that w is in fact in L.)

$$
\begin{array}{cc}
\text { aaaaa.....aaaaaal } \\
1 & \text { bbbbb.....bbbbbb } \\
2
\end{array}
$$

There are three possibilities for y :

- (1): $y=a^{p}$ for some p. Since $y \neq \varepsilon, p$ must be greater than 0 . Let $q=2$. The resulting string is $\mathrm{a}^{k+p} \mathrm{~b}^{k}$. But this string is not in L, since it has more a's than b's. .
$\bullet(2): y=\mathrm{b}^{p}$ for some p. Since $y \neq \varepsilon, p$ must be greater than 0 . Let $q=2$. The resulting string is $a^{k} b^{k+p}$. But this string is not in L, since it has more b's than a's.
- (1, 2): $y=\mathrm{a}^{p} \mathrm{~b}^{r}$ for some non-zero p and r. Let $q=2$. The resulting string will have interleaved a's and b's, and so is not in L.

Thus L is not regular.

A better choice for w

Second try. A choice of w that makes it easier:
Choose w to be $\mathrm{a}^{k} \mathrm{~b}^{k}$
(We get to choose any w whose length is at least k).
$1 \quad 2$
$\frac{\mathrm{a} a \mathrm{a} a \mathrm{a} \ldots \mathrm{a} \mathrm{a} \text { a a abbbb } \ldots \mathrm{bbbbbbb}}{y} \frac{z}{y}$
We show that there is no x, y, z with the required properties:
$|x y| \leq k$,
$y \neq \varepsilon$,
$\forall q \geq 0\left(x y^{q} z\right.$ is in $\left.L\right)$.
Since $|x y| \leq k, y$ must be in region 1 . So $y=a^{p}$ for some $p \geq 1$. Let q
$=2$, producing:

$$
\mathrm{a}^{k+p} \mathrm{~b}^{k}
$$

which $\notin L$, since it has more a's than b's.
We only have
to find one q
that takes us
outside of L .

 Recap: Using the Pumping Theorem

If L is regular, then every "long" string in L is pumpable.
To show that L is not regular, we find one string that isn't.
To use the Pumping Theorem to show that a language L is not regular, we must:

1. Choose a string w where $|w| \geq k$. Since we do not know what k is, we must describe w in terms of k.
2. Divide the possibilities for y into a set of equivalence classes that can be considered together.
3. For each such class of possible y values where $|x y| \leq k$ and $y \neq \varepsilon$:

Choose a value for q such that $x y^{q_{z}}$ is not in L.

