MA/CSSE 474

の一方の一方

Theory of Computation

Finish NDFSM→DFSM

Minimize # states in a DFSM

An Algorithm for Minimization

Capture the notion of equivalence classes of strings with respect to a language.

Prove that we can always find a (unique up to state naming) a deterministic FSM with a number of states equal to the number of equivalence classes of strings.

Describe an algorithm for finding that deterministic FSM.

Because \approx_L is an Equivalence Relation

An equivalence relation on a set partitions that set into equivalence classes

Thus:

- No equivalence class of \approx_L is empty.
- Each string in Σ^* is in exactly one equivalence class of \approx_L .

	One More Example of ≈ _L
	$\Sigma = \{a, b\}$ L = { $a^n b^n, n \ge 0$ }
	E aa aaaa a aba aaaaa b aaa
1. (N.) 60	The equivalence classes of \approx_L :
	Recall that $\mathbf{x} \approx_L \mathbf{y}$ iff $\forall \mathbf{z} \in \Sigma^*$ ($\mathbf{xz} \in L \leftrightarrow \mathbf{yz} \in L$).