MA/CSSE 474

Theory of Computation
Finish NDFSM \rightarrow DFSM
Minimize \# states in a DFSM

Nondeterministic and Deterministic FSMs

Clearly: $\quad\{$ Languages accepted by some DFSM $\} \subseteq$ \{Languages accepted by some NDFSM\}

More interesting:

Theorem:

For each NDFSM, there is an equivalent DFSM.
"equivalent" means "accepts the same language"

Nondeterministic and Deterministic FSMs

Theorem: For each NDFSM, there is an equivalent DFSM.
Proof: By construction:

$$
\begin{array}{cl}
\text { Given a NDFSM } & M=(K, \Sigma, \Delta, s, A), \\
\text { we construct } & M^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, A^{\prime}\right) \text {, where } \\
& \text { More precisely, each state in } K^{\prime} \text { is the string that } \\
K^{\prime} \subseteq \mathscr{P}(K) & \text { encodes a subset of } K \text {, using the standard set notation. } \\
s^{\prime}=e p s(s) & \text { Example: "\{q0, q2\}" We omit the quotation marks. } \\
A^{\prime}=\left\{Q \subseteq K^{\prime}: Q \cap A \neq \varnothing\right\} \\
\delta^{\prime}(Q, a)=\bigcup & \{\operatorname{eps}(p): p \in K \text { and } \\
& (q, a, p) \in \Delta \text { for some } q \in Q\}
\end{array}
$$

Think of the simulator as the "interpreted version" and this as the "compiled version".

An Algorithm for Constructing the Deterministic FSM

1. Compute the eps(q)'s.
2. Compute $s^{\prime}=e p s(s)$.
3. Compute $\delta^{\text { }}$.
4. Compute $K^{\prime}=$ a subset of $\mathscr{P}(K)$.
5. Compute $A^{\prime}=\left\{Q \in K^{\prime}: Q \cap A \neq \varnothing\right\}$.

Finite State Machines

Intro to State Minimization

Among all DFSMs that are equivalent to a given DFSM, can we find one whose number of states is minimal?

Note that this is a different question from "Is there an equivalent machine with a minimal number of states?", which has an obvious answer.

State Minimization

Consider:

Is this a minimal machine?
It's not immediately obvious!
We need tools!

State Minimization

Step (1): Get rid of unreachable states.

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.

Getting Rid of Unreachable States

We can't easily find the unreachable states directly. But we can find the reachable ones and determine the unreachable ones from there.

An algorithm for finding the reachable states:

Like many algorithms from this course, the structure is "add things until nothing new can be added"

Getting Rid of Redundant States

Intuitively, two states are equivalent to each other (and thus one is redundant) if, starting in those states, all strings in Σ^{*} have the same fate, regardless of which of the two states the machine is currently in.
But how can we tell this?

The simple case:

Two states have identical sets of transitions out.

Getting Rid of Redundant States

The harder case:

The outcomes in states 2 and 3 are the same, even though the states aren't.

An Algorithm for Minimization

Capture the notion of equivalence classes of strings with respect to a language.

Prove that we can always find a (unique up to state naming) a deterministic FSM with a number of states equal to the number of equivalence classes of strings.

Describe an algorithm for finding that deterministic FSM.

Equivalent Strings (w.r.t. L)

We say that two strings x and y are equivalent or indistinguishable with respect to a language L if,
no matter what string z is appended to both, either both concatenated strings will be in L or neither will.

Write it in first-order logic:
$x \approx_{L} y \quad$ iff
Example:
x: a
y: bab
Suppose $L_{1}=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}:|w|\right.$ is even $\}$. Are \mathbf{x} and \mathbf{y} equivalent?
Suppose $L_{2}=\left\{w \in\{a, b\}^{*}:\right.$ every a is immediately followed by $\left.b\right\}$.
Are $\mathbf{x}=\mathrm{a}$ and $\mathbf{y}=$ aa equivalent with respect to L_{2} ?

\approx_{L} is an Equivalence Relation

\approx_{L} is an equivalence relation because it is:

- Reflexive: $\forall x \in \Sigma^{*}\left(x \approx_{L} x\right)$, because:

$$
\forall x, z \in \Sigma^{\star}(x z \in L \leftrightarrow x z \in L)
$$

- Symmetric: $\forall x, y \in \Sigma^{*}\left(x \approx_{L} y \rightarrow y \approx_{L} x\right)$, because:

$$
\begin{gathered}
\forall x, y, z \in \Sigma^{\star}((x z \in L \leftrightarrow y z \in L) \leftrightarrow \\
(y z \in L \leftrightarrow x z \in L)) .
\end{gathered}
$$

- Transitive: $\forall x, y, z \in \Sigma^{*}\left(\left(\left(x \approx_{L} y\right) \wedge\left(y \approx_{L} w\right)\right) \rightarrow\left(x \approx_{L} w\right)\right)$, because:
$\forall x, y, z \in \Sigma^{*}$

$$
\begin{aligned}
& (((x z \in L \leftrightarrow y z \in L) \wedge(y z \in L \leftrightarrow w z \in L)) \rightarrow \\
& \quad(x z \in L \leftrightarrow w z \in L)) .
\end{aligned}
$$

Because \approx_{L} is an Equivalence Relation

An equivalence relation on a set partitions that set into equivalence classes

Thus:

- No equivalence class of \approx_{L} is empty.
- Each string in Σ^{*} is in exactly one equivalence class of \approx_{L}.

An Example

$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$L=\left\{w \in \Sigma^{*}\right.$: every a is immediately followed by b\}

What are the equivalence classes of \approx_{L} ?
Hint: Try:

ε	aa	bbb
a	bb	baa
b	aba	
	aab	

Recall that $x \approx_{L} y \quad$ iff $\quad \forall z \in \Sigma^{*}(x z \in L \leftrightarrow y z \in L)$.

Another Example of \approx_{L}

$\Sigma=\{a, b\}$
$L=\left\{w \in \Sigma^{*}:|w|\right.$ is even $\}$
ε
a
b
aa
bb
aba
aab
bbb
baa
aabb
bbaa aabaa

The equivalence classes of \approx_{L} : Recall that $x \approx_{L} y \quad$ iff $\quad \forall z \in \Sigma^{*}(x z \in L \leftrightarrow y z \in L)$.

Yet Another Example of \approx_{L}

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& L=a a b * a
\end{aligned}
$$

ε	bb
a	aba
b	aab
aa	baa
	aabb

Do this one for practice later aabaa aabbba aabbaa

The equivalence classes of \approx :
Recall that $\mathrm{x} \approx \mathrm{z} y \quad$ iff $\quad \forall z \in \Sigma^{*}(x z \in L \leftrightarrow y z \in L)$.
\square

One More Example of $\approx_{\llcorner }$

$\Sigma=\{a, b\}$
$\mathrm{L}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n}, n \geq 0\right\}$

ε	aa	aaaa
a	aba	aaaaa
b	aaa	

The equivalence classes of $\approx_{\llcorner }$:

Recall that $x \approx_{L} y \quad$ iff $\quad \forall z \in \Sigma^{*}(x z \in L \leftrightarrow y z \in L)$.

