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MA/CSSE 474

Theory of Computation

Finish NDFSMDFSM

Minimize # states in a  DFSM

Your Questions?
• Previous class days' material

• Reading Assignments
• HW2 solutions
• HW3 or HW4
• Tuesday's Exam
• Anything else

Another 
example of why 
we often need 

formal 
specifications 

instead of 
natural 

language
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Nondeterministic and 
Deterministic FSMs

Clearly: {Languages accepted by some DFSM} 
{Languages accepted by some NDFSM}

More interesting:

Theorem:

For each NDFSM, there is an equivalent DFSM.

"equivalent" means "accepts the same language"

Nondeterministic and 
Deterministic FSMs

Theorem: For each NDFSM, there is an 
equivalent DFSM.

Proof: By construction:

Given a NDFSM   M = (K,  , ,  s, A), 
we construct     M' = (K', , ', s', A'), where

K'  P(K)
s' = eps(s)
A' = {Q  K' : Q  A  }

'(Q, a) = {eps(p): p  K and 
(q, a, p)   for some q  Q}

More precisely, each state in K' is the string that 
encodes a subset of K, using the standard set notation.  
Example: "{q0, q2}"  We omit the quotation marks.

Think of the simulator as the "interpreted version" 
and this as the "compiled version".
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An Algorithm for Constructing the 
Deterministic FSM

1. Compute the eps(q)’s.

2. Compute s' = eps(s). 

3. Compute ‘.

4. Compute K' = a subset of P(K).

5. Compute A' = {Q  K' : Q  A  }.

The Algorithm ndfsmtodfsm
ndfsmtodfsm(M: NDFSM) =   

1. For each state q in KM do:
1.1 Compute eps(q).

2. s' = eps(s) 
3. Compute ': 

3.1 active-states = {s'}.
3.2 ' = .
3.3 While there exists some element Q of active-states for 

which ' has not yet been computed do:
For each character c in M do:

new-state = .
For each state q in Q do:

For each state p such that (q, c, p)   do:
new-state = new-state  eps(p).

Add the transition (q, c, new-state) to '.
If new-state  active-states then insert it.

4. K' = active-states.
5. A' = {Q  K' : Q  A   }.

Draw part of the transition 
diagram for the DFSM 
constructed from the 
NDFSM that appeared a 
few slides earlier.

Later we may prove that this 
works for all NDFSMs M.
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Finite State Machines

Intro to State Minimization

Among all DFSMs that are equivalent 
to a given DFSM, can we find one 

whose number of states is minimal?

Note that this is a different question 
from "Is there an equivalent machine 
with a minimal number of states?", 

which has an obvious answer.

State Minimization

Consider:

Is this a minimal machine?  
It's not immediately obvious!
We need tools!
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State Minimization

Step (1): Get rid of unreachable states.

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.

Getting Rid of Unreachable States
We can’t easily find the unreachable states directly.  
But we can find the reachable ones and determine the 
unreachable ones from there.

An algorithm for finding the reachable states:

Like many algorithms from this course, 
the structure is "add things until nothing 
new can be added"
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Getting Rid of Redundant States

Intuitively, two states are equivalent to each other (and 
thus one is redundant) if, starting in those states,  all 
strings in * have the same fate, regardless of which of 
the two states the machine is currently in.  
But how can we tell this? 

The simple case:

Two states have identical sets of transitions out.

Getting Rid of Redundant States

The harder case:

The outcomes in states 2 and 3 are the same, even 
though the states aren’t.
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An Algorithm  for Minimization

Capture the notion of equivalence classes of 
strings with respect to a language.

Prove that we can always find a (unique up to 
state naming) a deterministic FSM with a number 
of states equal to the number of equivalence 
classes of strings.

Describe an algorithm for finding that 
deterministic FSM.

Equivalent Strings (w.r.t. L)
We say that two strings x and y are equivalent or indistinguishable with 
respect to a language L if, 

no matter what string z is appended to both, 
either both concatenated strings will be in L or neither will.  

Write it in first-order logic:
x L y     iff

Example:

x: a            y: bab

Suppose L1 = {w  {a, b}* : |w| is even}.  Are x and y equivalent?

Suppose L2 = {w  {a, b}* : every a is immediately followed by b}. 

Are x = a and y = aa equivalent with respect to L2? 
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L is an Equivalence Relation

• Reflexive:  x  * (x L x), because:

x, z  * (xz  L  xz  L).

• Symmetric: x, y  * (x L y  y L x), because:

x, y, z  * ((xz  L  yz  L) 
(yz  L  xz  L)).

• Transitive: x, y, z  * (((x L y)  (y L w))  (x L w)), 

because:

x, y, z  * 

(((xz  L  yz  L)  (yz  L  wz  L)) 
(xz  L  wz  L)).

L is an equivalence relation because it is:

Because L is an Equivalence Relation

• No equivalence class of L is empty.

• Each string in * is in exactly one equivalence class of L.

An equivalence relation on a set partitions that set into 
equivalence classes
.
Thus:
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An Example

 = {a, b}
L = {w  *: every a is immediately followed by b}

What are the equivalence classes of L?  

Hint:  Try:

 aa bbb
a bb baa
b aba

aab

Recall that x L y     iff    z  * (xz  L ↔ yz  L).

Another Example of L

 = {a, b}
L = {w  * : |w| is even}

 bb aabb
a aba bbaa
b aab aabaa
aa bbb

baa

The equivalence classes of L:

Recall that x L y     iff    z  * (xz  L ↔ yz  L).
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Yet Another Example of L

 = {a, b}
L = aab*a

 bb aabaa
a aba aabbba
b aab aabbaa
aa baa

aabb

The equivalence classes of L:

Do this one 
for practice 
later

Recall that x L y     iff    z  * (xz  L ↔ yz  L).

More Than One Class Can Contain Strings in L

 = {a, b}
L = {w  * : no two adjacent characters in w are the same}

The equivalence classes of L:

[1] []
[2] [a, aba, ababa, …]
[3] [b, ab, bab, abab, …]
[4] [aa, abaa, ababb…]

Recall that x L y     iff    z  * (xz  L ↔ yz  L).
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One More Example of L

 = {a, b}
L = {anbn, n  0}

 aa aaaa
a aba aaaaa
b aaa

The equivalence classes of L:

Recall that x L y     iff    z  * (xz  L ↔ yz  L).


