

Languages and Strings

Mostly very quick.
Some should be review of previous courses, and some others you should have gotten for Reading Quiz 2.

Ask questions if there are things I list here that you are not sure about.

Properties of Strings

- A string is a finite sequence (possibly empty) of symbols from some finite alphabet Σ.
- ε is the empty string (some books/papers use λ instead)
- Σ^{*} is the set of all possible strings over an alphabet Σ
- Counting: $|s|$ is the number of symbols in s. $|\varepsilon|=0 \quad|1001101|=7$
- $\#_{c}(s)$ is the number of times that c occurs in $s . \#_{\mathrm{a}}(\mathrm{abbaaa})=4$.

More Functions on Strings

Concatenation: st is the concatenation of s and t.
If $x=$ good and $y=$ bye, then $x y=$ goodbye.
Note that $|x y|=|x|+|y|$.
ε is the identity for concatenation of strings. So:
$\forall x(x \varepsilon=\varepsilon x=x)$.
Concatenation is associative. So:
$\forall s, t, w((s t) w=s(t w))$.

More Functions on Strings

Replication: For each string w and each natural number i, the string w^{i} is:

$$
w^{0}=\varepsilon, w^{i+1}=w^{i} w
$$

Examples:

$$
\begin{aligned}
& a^{3}=a a a \\
& (b y e)^{2}=b y e b y e \\
& a^{0} b^{3}=b b b
\end{aligned}
$$

Reverse: For each string w, w^{R} is defined as:
if $|w|=0$ then $w^{R}=w=\varepsilon$
if $|w| \geq 1$ then:
$\exists a \in \Sigma\left(\exists u \in \Sigma^{*}(w=u a)\right)$.
So define $w^{R}=a u^{R}$.

Concatenation and Reverse of Strings

Theorem: If w and x are strings, then $(w x)^{R}=x^{R} w^{R}$.
Example:
$(\text { nametag })^{R}=(\text { tag })^{R}(\text { name })^{R}=$ gateman

Proof on next slide

Concatenation and Reverse of Strings

Proof: By induction on $|x|$:
$|x|=0$: Then $x=\varepsilon$, and $(w x)^{R}=(w \varepsilon)^{R}=(w)^{R}=\varepsilon w^{R}=\varepsilon^{R} w^{R}=x^{R} w^{R}$.
$\forall n \geq 0\left(\left((|u|=n) \rightarrow\left((w u)^{R}=u^{R} w^{R}\right)\right) \rightarrow\right.$

$$
\left.\left((|x|=n+1) \rightarrow\left((w x)^{R}=x^{R} w^{R}\right)\right)\right):
$$

Consider any string x, where $|x|=n+1$. Then $x=u$ a for some symbol a and $|u|=n$. So:

$$
\begin{aligned}
(w x)^{R} & =(w(u a))^{R} & & \text { rewrite } x \text { as } u a \\
& =((w u) a)^{R} & & \text { associativity of concatenation } \\
& =a(w u)^{R} & & \text { definition of reversal } \\
& =a\left(u^{R} w^{R}\right) & & \text { induction hypothesis } \\
& =\left(a u^{R}\right) w^{R} & & \text { associativity of concatenation } \\
& =(u a)^{R} w^{R} & & \text { definition of reversal } \\
& =x^{R} w^{R} & & \text { rewrite ua as } x
\end{aligned}
$$

Relations on Strings:

Substring, proper substring

Every string is a substring of itself.
ε is a substring of every string.
prefix, proper prefix
Every string is a prefix of itself. ε is a prefix of every string.
s is a suffix, proper suffix, self, ε

Defining a Language

A language is a (finite or infinite) set of strings over a finite alphabet Σ. Examples for $\Sigma=\{a, b\}$

1. $L=\left\{x \in\{a, b\}^{*}:\right.$ all a's precede all b 's $\}$
ε, a, aa, a abbb, and bb are in L. aba, ba, and abc are not in L.
2. $L=\left\{x: \exists u \in\{a, b\}^{*}: x=u a\right\}$

Simple English description:
3. $L=\left\{x \# y: x, y \in\{0,1,2,3,4,5,6,7,8,9\}^{*}\right.$ and, when x and y are viewed as the decimal representations of natural numbers, square $(x)=y\}$.
Examples (in L or not?):
3\#9, 12\#144, 3\#8, 12, 12\#12\#12, \#
4. $L=\left\{a^{n}: n \geq 0\right\}$ uses replication, simpler description of L ?
5. $A^{n} B^{n}=\left\{a^{k} b^{k}: k \geq 0\right\}$
6. $L=\varnothing=\{ \}$

You saw in Reading Quiz 2
7. $L=\{\varepsilon\}$

that the last two examples

are different languages

Natural Languages are Tricky

$L=\{w: w$ is a sentence in English $\}$.
Examples:
Kerry hit the ball.
Colorless green ideas sleep furiously.
The window needs fixed.

Ball the Stacy hit blue.

A Halting Problem Language

$L=\{w: w$ is a Java program that, when given any finite input string, is guaranteed to halt\}.

- Is this language well specified?
- Can we decide which strings L contains?

Languages and Prefixes

What are the following languages?
$L=\left\{w \in\{a, b\}^{*}:\right.$ no prefix of w contains $\left.b\right\}$
$L=\left\{w \in\{a, b\}^{*}:\right.$ no prefix of w starts with $\left.a\right\}$
$L=\left\{w \in\{a, b\}^{*}\right.$: every prefix of w starts with $\left.a\right\}$

Concatenation of Languages

If L_{1} and L_{2} are languages over Σ :

$$
L_{1} L_{2}=\left\{w \in \Sigma^{*}: \exists s \in L_{1}\left(\exists t \in L_{2}(w=s t)\right)\right\}
$$

Alternate definition:
$L_{1} L_{2}=\{s t: s \in L 1 \wedge t \in L 2\}$
Simpler than the first definition, but the first one conveys the idea more precisely.
$L_{1}=\{a, a a\}$
$L_{2}=\{a, c, \varepsilon\}$
$L_{1} L_{2}=$

Con
 - L^{R}
 Is this the same as $\left\{w^{3}: w \in L\right\}$

Formally: Kleene Star and + of a Language $L^{*}=\{\varepsilon\} \cup$
$\left\{W \in \Sigma^{*}: \exists k \geq 1\right.$

$$
\left.\left(\exists w_{1}, w_{2}, \ldots w_{k} \in L\left(w=w_{1} w_{2} \ldots w_{k}\right)\right)\right\}
$$

Alternate: $\mathrm{L}^{*}=\mathrm{L}^{0} \cup \mathrm{~L}^{1} \cup \mathrm{~L}^{2} \cup \ldots=\mathrm{U}_{k=0}^{\infty} \mathrm{L}^{k}$
$L^{+}=L L^{*}$
$L^{+}=L^{*}-\{\varepsilon\}$ iff $\varepsilon \notin L$
L^{+}is the closure of L under concatenation.

Concatenation and Reverse of Languages

Theorem: $\left(L_{1} L_{2}\right)^{R}=L_{2}{ }^{R} L_{1}{ }^{R}$.
Proof:
$\forall x\left(\forall y\left((x y)^{\mathrm{R}}=y^{\mathrm{R}} x^{\mathrm{R}}\right)\right)$ Theorem 2.1 we proved last time
$\left(L_{1} L_{2}\right)^{R}=\left\{(x y)^{R}: x \in L_{1}\right.$ and $\left.y \in L_{2}\right\} \quad$ Definition of concatenation of languages
$=\left\{y^{R} x^{R}: x \in L_{1}\right.$ and $\left.y \in L_{2}\right\} \quad$ Thm 2.1
$=L_{2}{ }^{R} L_{1}{ }^{R} \quad$ Definition of concatenation of languages

Sets and Relations

Sets of Sets

- The power set of S is the set of all subsets of S.

Let $S=\{1,2,3\}$. Then:

$$
\mathscr{P}(S)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} .
$$

- $\Pi \subseteq P(S)$ is a partition of a set S iff:
- Every element of Π is nonempty,
- Every pair of elements of Π is disjoint, and
- the union of all the elements of Π equals S.

Some partitions of $=\{1,2,3\}$:
$\{\{1\},\{2,3\}\}$ or $\{\{1,3\},\{2\}\}$ or $\{\{1,2,3\}\}$.
How many different partitions of S?

Closure

- A set S is closed under binary operation op iff $\forall x, y \in S(x$ op $y \in S)$,
closed under unary if S is not closed under unary function function fiff f , a closure of S is a set S^{\prime} such that $\forall x \in \mathrm{~S}(\mathrm{f}(\mathrm{x}) \in \mathrm{S})$
a) S is a subset of S^{\prime}
b) S^{\prime} is closed under f
c) No proper subset of S^{\prime} contains S and is closed under f
- Examples
- $\mathbb{N}+$ (the set of all positive integers) is closed under addition and multiplication but not negation, subtraction, or division.
- What is the closure of $\mathbb{N}+$ under subtraction? Under division?
- The set of all finite sets is closed under union and intersection. Closed under infinite union?

Equivalence Relations

A relation on a set A is any set of ordered pairs of elements of A.

A relation $R \subseteq A \times A$ is an equivalence relation iff it is:
-reflexive,
-symmetric, and
-transitive.
Examples of equivalence relations:
-Equality
-Lives-at-Same-Address-As
-Same-Length-As

Show that \equiv_{3} is an
equivalence relation
-Contains the same number of a's as

Cardinality of a set.

The cardinality of every set we will consider is one of the following:

- a specific natural number (if S is finite),
- "countably infinite" (if S has the same number of elements as there are integers), or
- "uncountably infinite" (if S has more elements than there are integers).

The rest of today's slides

We probably won't get to them today.
But they are here just in case ...

Functions on Languages

Functions whose domains and ranges are languages
$\operatorname{maxstring}(L)=\left\{w \in L: \forall z \in \Sigma^{*}(z \neq \varepsilon \rightarrow w z \notin L)\right\}$.
Examples:
Exercise for later:
What language is

- maxstring($\left.\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}}\right)$ maxstring(\{bna: $n \geq 0\})$?
- maxstring ($\{\mathrm{a}\}^{*}$)

Let INF be the set of infinite languages.
Let FIN be the set of finite languages.
Are the language classes FIN and INF closed under maxstring?

Functions on Languages

$\operatorname{chop}(L)=$
$\left\{W: \exists x \in L\left(x=x_{1} c x_{2}, x_{1} \in \Sigma_{L}{ }^{*}, x_{2} \in \Sigma_{L}{ }^{*}, c \in \Sigma_{L}\right.\right.$, $\left|x_{1}\right|=\left|x_{2}\right|$, and $\left.\left.w=x_{1} x_{2}\right)\right\}$.

What is chop $\left(\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}}\right)$?

What is chop $\left(\mathrm{A}^{\mathrm{n}} \mathrm{B}^{n} \mathrm{C}^{\mathrm{n}}\right)$?

Are FIN and INF closed under chop?

Functions on Languages

firstchars $(L)=$

$$
\left\{w: \exists y \in L\left(y=c x \wedge c \in \Sigma_{L} \wedge x \in \Sigma_{L}^{*} \wedge w \in\{c\}^{*}\right)\right\} .
$$

What is firstchars $\left(\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}}\right)$?

What is firstchars(\{a, b\}*)?

Are FIN and INF closed under firstchars?

