MA/CSSE 474 Day 03 Summary . Main ideas from today (and probably a few that we'll get to tomorrow):

- 1. Operations on strings:
 - a. |w|
 - b. #_a(w)
 - c. Concatenation wx (it's associative, and ε is the identity for this operation)
 - d. w
 - e. w^R (recursive definition): $\varepsilon^R = \varepsilon$, (ua)^R = au^R
- 2. **Theorem:** If w and x are strings, then $(wx)^R = x^R w^R$. Prove it by induction on |x|

Base case:
$$|x| = 0$$
: Then $x = \varepsilon$, and $(wx)^R = (w \varepsilon)^R = (w)^R = \varepsilon w^R = \varepsilon^R w^R = x^R w^R$.

Induction step:
$$\forall n \geq 0$$
 (((|u| = n) → ((w u)^R = u^R w^R)) → ((|x| = n + 1) → ((w x)^R = x^R w^R))):

Consider any string x, where |x| = n + 1. Then x = u a for some symbol a and |u| = n. So:

$$(w \, x)^{R} = (w \, (u \, a))^{R}$$
 rewrite x as ua

$$= ((w \, u) \, a)^{R}$$
 associativity of concatenation
$$= a \, (w \, u)^{R}$$
 definition of reversal
$$= a \, (u^{R} \, w^{R})$$
 induction hypothesis
$$= (a \, u^{R}) \, w^{R}$$
 associativity of concatenation
$$= (ua)^{R} \, w^{R}$$
 definition of reversal
$$= x^{R} \, w^{R}$$
 rewrite ua as x

- 3. You should know the meaning of *substring, prefix,* and *suffix,* and the "proper" version of each of those.
- 4. Describe in simple English the language $L = \{x : \exists u \in \{a, b\}^* : x = ua\}$
- 5. $L = \{x \# y : x, y \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^* \text{ and, when } x \text{ and } y$ are viewed as the decimal representations of natural numbers, $square(x) = y\}$. **Examples**: (in L or not?) : #9, 12#144, 3#8, 12, 12#12#12, #
- 6. Give a very short symbolic description of $L = \{a^n : n \ge 0\}$
- 7. A language that we will use a lot: $A^nB^n = \{a^kb^k : k \ge 0\}$
- 8. Is the Halting problem language well-specified? Can we decide which strings it contains?

 $L = \{w: w \text{ is a Java program that, no matter what finite input string it is given, is guaranteed to halt}\}.$

9. Languages based on prefixes:

$$L = \{w \in \{a, b\}^* : no \text{ prefix of } w \text{ contains b} \}$$

$$L = \{w \in \{a, b\}^*: no \text{ prefix of } w \text{ starts with a} \}$$

$$L = \{w \in \{a, b\}^* : \text{ every prefix of } w \text{ starts with a} \}$$

10.	Concatenation of languages, and related things				
	a. L₁L	$_{-2}$. If L1 = {a, aa}, and L2 =	= {a, c, ε}, then L1 L2 =	. What is $L\{\epsilon\}$?	LØ?
	b. L ^R				
	c. L ³	Is this the same as {	{w3:w∈L}?		
	d. L ⁰				
	e. L ^k				
	f. L*				
	g. L ⁺				
11.	How many	y different partitions of the	e set {1, 2, 3}?		
12.	Are the na	tural numbers closed und	$\operatorname{der} f(x) = 1 + x? \ g(x) = x - 1? \ l$	h(x) = 1/x $k(x) = #$ distinct factors	s of x?
13.	What is th	e closure of N+ under divi	sion?		
14.	Show that	\equiv_3 is an equivalence rela	tion. (a \equiv_3 b iff b-a = 3k for so	me integer k).	
	reflexive:				
	symmetric	C:			
	transitive:				
15.	Can a langı	uage be uncountable?			
	Is the set o	of languages over a specific	alphabet uncountable?		
16.	maxstring(Let INF be	· · · · · · · · · · · · · · · · · · ·	ing({a}*) = s. Let FIN be the set of finite lang	guages.	
17.	What is cho	about the <i>chop</i> function (d <i>op</i> (A ⁿ B ⁿ)? d INF closed under <i>chop</i> ?	efined on a slide): What is <i>chop</i> (A ⁿ B ⁿ C ⁿ)?		