
MA/CSSE 474 Final Exam Notation and Formulas page Name ________________ (turn this in with your exam)

Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet Σ; while a, b, c, d are individual alphabet symbols.

DFSM notation: M= (K, Σ, δ, s, A), where:
 K is a finite set of states, Σ is a finite alphabet
 s ∈ K is start state, A ⊆ K is set of accepting states
 δ: (K × Σ) → K is the transition function

Extend δ's definition to δ: (K × Σ*) → K by the recursive definition δ(q, ε)=q,
 δ(q, xa) = δ(δ(q, x), a)
M accepts w iff δ(s, w) ∈ A. L(M) = {w ∊ Σ* : δ(s, w) ∊ A}
Alternate notation:

(q, w) is a configuration of M. (current state, remaining input)
The yields-in-one-step relation: |-M :
 (q, w) |-M (q', w') iff w = a w' for some symbol a ∈ Σ, and δ (q, a) =
q'
The yields-in-zero-or-more-steps relation: |-M* is the reflexive, transitive
closure of |-M .
A computation by M is a finite sequence of configurations C0, C1, …, Cn for some n ≥ 0 such that:

 • C0 is an initial configuration,
 • Cn is of the form (q, ε), for some state q ∈ KM,
 • ∀i∈{0, 1, …, n-1} (Ci |-M Ci+1)

 M accepts w iff the state that is part of the last step in w is in A.
A language L is regular if L=L(M) for some DFSM M.
In an NDFSM, the function δ is replaced by the relation Δ: Δ ⊆ (K × (Σ ∪ {ε})) × K
Equivalent strings relative to a language: Given a language L, two strings w and x in ΣL* are indistinguishable with respect to L, written w≈Lx, iff
∀z ∈ Σ* (xz ∈ L iff yz ∈ L).
[x] is a notation for "the equivalence class that contains the string x".
The construction of a minimal-state DSFM based on ≈L:

M = (K, Σ, δ, s, A), where K contains n states, one for each equivalence class of ≈L.
s = [ε], the equivalence class containing ε under ≈L,
A = {[x] : x ∈ L},
δ([x], a) = [xa].

Enumerator (generator) for a language: when it is asked, enumerator gives us the next element of the language. Any given element of the language will
appear within a finite amount of time. It is allowed that some may appear multiple times.
Recognizer: Given a string s, recognizer halts and accepts s if s is in the language. If not, recognizer either halts and rejects s or keeps running forever.
This is a semidecision procedure. If recognizer is guaranteed to always halt and
 (accept or reject) no matter what string it is given as input, it is a decision procedure.
The regular expressions over an alphabet Σ are the strings that can be obtained as follows:
1. ∅ is a regular expression.
2. ε is a regular expression.
3. Every element of Σ is a regular expression.
4. If α , β are regular expressions, then so is αβ.
5. If α , β are regular expressions, then so is α∪β.
6. If α is a regular expression, then so is α*.
7. α is a regular expression, then so is α+.
8. If α is a regular expression, then so is (α).

Recursive formula for constructing a regular expression from a DFSM: rijk is rij(k-1) ∪ rik(k-1)(rkk(k-1))*rkj(k-1)

The set of regular languages is closed under complement, intersection, union, set difference, concatenation, Kleene * and +, reverse

Pumping Theorem and its contrapositive:

Reg. exp. operator precedence (High to Low):
 parenthesized expressions, * and +, concatenation, union

The contrapositive form:
(∀k ≥ 1
 (∃ a string w ∈ L
 (|w| ≥ k and
 (∀ x, y, z
 ((w = xyz ∧ |xy| ≤ k ∧ y ≠ ε) →
 ∃q ≥ 0 (xyqz is not in L)
)))))
→ L is not regular

Functions on languages:
firstchars(L) = {w : ∃y∈L (y = cx, c ∈ ΣL, x ∈ ΣL*, and w ∈ c*)}
chop(L) = {w : ∃x∈L (x = x1cx2, x1 ∈ ΣL*, x2 ∈ ΣL*, c ∈ ΣL |x1| = |x2|, and w = x1x2)}
maxstring(L) = {w: w ∈ L, ∀z ∈Σ* (z ≠ ε → wz ∉ L)}
mix(L) = {w: ∃x, y, z (x ∈ L, x = yz, |y| = |z|, w = yzR)}
middle(L) = {x: ∃y, z ∈ Σ* (yxz ∈ L)}
alt(L) = {x: ∃y,n (y ∈ L , |y| = n, n > 0, y = a1…an,∀i ≤ n (ai ∈ Σ), and
 x = a1a3a5…ak, where k = (if n is even then n-1 else n))}

Formally, if L is regular, then
∃k ≥ 1 such that
 (∀ strings w ∈ L, (|w| ≥ k →
 (∃ x, y, z (w = xyz, |xy| ≤ k, y ≠ ε, and
 ∀q ≥ 0 (xyqz is in L)))))

CFG definition: G = (V, Σ, R, S)
(vocabulary, terminals, rules, start symbol)
Derivation and language definition
One derivation step: x ⇒G y iff ∃α,β,γ∈V*, A∈N ((x = αAβ) ∧ (A → γ ∈ R) ∧ (y = α γ β))

⇒G* is the reflexive, transitive closure of ⇒G

The language defined by a grammar: L(G) = {w ∈ Σ* : S ⇒G* w}
L is context-free if there is a context-free grammar G such that L = L(G).

A parse tree, derived from a grammar G = (V, Σ, R, S), is a rooted, ordered tree in which:

 Every leaf node is labeled with an element of Σ ∪ {ε},
 The root node is labeled S,
 Every other node is labeled with an element of N, and
 If m is a non-leaf node labeled X and the (ordered) children of m are labeled x1, x2, …, xn,

then R contains the rule X → x1 x2, … xn.
Chomsky Normal Form, in which all rules are of one of the following two forms:

X → a, where a ∈ Σ, or X → BC, where B and C are elements of V - Σ.
Greibach Normal Form, in which all rules are of the form X → a β, where a ∈ Σ and β ∈ N*.
A grammar is ambiguous if some string it generates has two different parse trees

Equivalently, two different leftmost derivations, or two different rightmost derivations
A CFL is inherently ambiguous if every CFG that generates it is ambiguous.
PDA definition: M = (K, Σ, Γ, ∆, s, A),
 states, input alphabet, tape alphabet, transition relation, start state, accepting states

(q1, cw, γ1γ) |-M (q2, w, γ2γ) iff ((q1, c, γ1), (q2, γ2)) ∈ ∆.
accepting computation of M: (s, w, ε) |-M* (q, ε, ε), and q ∈ A
Top-down PDA from grammar: Production A  XYZ becomes (q, ε, A)  (q, XYZ)
(s, ε, ε)  (q, S) [s is the start state of M). A ={q} . For each terminal, (q, a, a)  (q, ε)
Bottom-up PDA from grammar: The shift transitions: ((p, c, ε), (p, c)), for each c ∈ Σ.
The reduce transitions: ((p, ε, (s1s2…sn.)R), (p, X)), for each rule X → s1s2…sn. in G. .
The finish-up transition: ((p, ε, S), (q, ε)). A = {q}
CFL closure: Union, Concatenation, Kleene Star. Reverse. Intersection with regular language.
Not closed under complement, intersection, set difference.
We have CFL decision algorithms for membership, emptiness, finiteness.
Undecidable questions about CFLs: Is L = Σ*? Is L regular? Is L1 = L2? Is L1 ⊆ L2? Is L1 ∩ L2 = ∅?
Is the complement of L context-free? Is L1 ∩ L2 = ∅? Is L inherently ambiguous? Is G ambiguous?
Deterministic PDA M: ∆M contains no pairs of transitions that compete with each other, and
whenever M is in an accepting configuration it has no available moves.
A language L is deterministic context-free iff L$ can be accepted by some deterministic PDA.
Formal TM definition. A deterministic TM M is (K, Σ, Γ, δ, s, H):

i) K is a finite set of states;
ii) Σ is the input alphabet, which does not contain ☐;
iii) Γ is the tape alphabet, which must contain ☐ and have Σ as a subset.
iv) s ∈ K is the initial state;
v) H ⊆ K is the set of halting states;
vi) δ is the transition function:

(1) (K - H) × Γ to K × Γ × {→, ←}
non-halting × tape → state × tape × direction to move
 state char char (R or L)

Yields. (q1, w1) |-M (q2, w2) iff (q2, w2) is derivable, via δ, in one step.
|-M* is the reflexive, transitive closure of |-M.
Configuration C1 yields configuration C2 if: C1 |-M* C2.
A path through M is a sequence of configurations C0, C1, …, Cn for some n ≥ 0 such that C0 is the init config and C0 |-M C1 |-M C2 |-M … |-M Cn.
A computation by M is a path that halts. If a computation is of length n (has n steps), we write: C0 |-Mn Cn

2) TMs as language recognizers. Let M = (K, Σ, Γ, δ, s, {y, n}).

a) M accepts a string w iff (s, qw) |-M* (y, w′) for some string w′.
b) M rejects a string w iff (s, qw) |-M* (n, w′) for some string w′.
c) M decides a language L ⊆ Σ* iff for any string w ∈ Σ*t:

i) if w ∈ L then M accepts w, and
ii) if w ∉ L then M rejects w.

d) A language L is decidable iff thewre is a TM M that decides it.
e) We define the set D to be the set of all decidable languages.

f) M semidecides L iff, for any string w ∈ ΣM*:
i) w ∈ L → M accepts w
ii) w ∉ L → M does not accept w. M may reject or not halt.

g) A language L is semidecidable iff there is a Turing machine that
semidecides it.

h) We define the set SD to be the set of all semidecidable
languages.

contrapositive of CFG Pumping Theorem:
If ∀k ≥ 1 (∃ a string w ∈ L, where |w| ≥
 (∀ u, v, x, y, z
 ((w = uvxyz, vy ≠ ε, and |vxy| ≤ k)
 implies
 (∃ q ≥ 0 (uvqxyqz is not in L))))),
 then L is not context-free

Additions since Exam 3:

3) TMs can compute functions. Let M = (K, Σ, Γ, δ, s, {h}).

a) M(w) = z iff (s, ☐w) |-M* (h, ☐z).
b) Let Σ′ ⊆ Σ be M’s output alphabet, and let f be any function from Σ* to Σ′*.

i) M computes f iff, for all w ∈ Σ*:
(1) if w is an input on which f is defined, then M(w) = f(w).
(2) otherwise M(w) does not halt.

c) A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts.
d) Computing numeric functions:

i) For any positive integer k, valuek(n) returns the nonnegative integer that is encoded, base k, by the string n.
ii) TM M computes a function f from ℕm to ℕ iff, for some k, valuek(M(n1;n2;…nm)) = f(valuek(n1), … valuek(nm)).

4) An m-tape TM can be simulated by a 2n-track TM, which can be simulated by a single-track machine.
5) Encoding a TM M = (K, Σ, Γ, δ, s, H) as a string <M>:

i) Encoding the states: Let i be log2(|K|).
(1) Number the states from 0 to |K|-1 in binary (i bits for each state number):
(2) The start state, s, is numbered 0; Number the other states in any order.
(3) If t′ is the binary number assigned to state t, then:

(a) If t is the halting state y, assign it the string yt′.
(b) If t is the halting state n, assign it the string nt′.
(c) If t is the halting state h, assign it the string ht′.
(a) If t is any other state, assign it the string qt′.

ii) Encoding the tape alphabet: Let j be log2(|Γ|).
(1) Number the tape alphabet symbols from 0 to |Γ| - 1 in binary.
(2) The blank symbol is number 0.
(3) The other symbols can be numbered in any order

iii) Encoding the transitions:
(1) (state, input, state, output, direction to move)
(2) Example: (q000,a000,q110,a000,→)

iv) Encoding s and H (already included in the above)
v) A special case of TM encoding

(1) One-state machine with no transitions that accepts only ε is encoded as (q0)
vi) Encoding other TMs: It is just a list of the machine's transitions:

(1) Detailed example on slide
vii) Consider the alphabet Σ = {(,), a, q, y, n, h, 0, 1, comma, →, ←}.

The following question is decidable:
(1) Given a string w in Σ*, is there a TM M such that w = <M> ?

6) We can enumerate all TMs, so that we have the concept of "the ith TM".
7) Specification of U, the Universal Turing Machine (UTM):

a) U starts with <M,w> on its input tape, then simulates M's action when it has input w:
b) U halts iff M halts on w.
c) If M is a deciding or semideciding machine, then:

i) If M accepts, U accepts. If M rejects, U rejects.
d) If M computes a function, then U(<M, w>) must equal M(w).

8) A language is in SD iff it is Turing enumerable.
A language is in D iff it is lexicographically enumerable.

9) D is closed under complement. SD is not; if L∈SD-D, ¬L∉SD. ¬H is an example.
10) Problem P1 is reducible to problem P2 (written P1 ≤ P2) if there is a Turing-computable
11) function f that finds, for an arbitrary instance I of P1, an instance f(I) of P2, and

a) f is defined such that for every instance I of P1,
b) I is a yes-instance of P1 if and only if f(I) is a yes-instance of P2.
c) So P1 ≤ P2 means "if we have a TM that decides P2, then there is a TM that decides P1.

12) A framework for using reduction to show undecidability. To show language L2 undecidable:
a) Choose a language L1 that is already known not to be in D, and show

that L1 can be reduced to L2.
b) Define the reduction R and show that it can be implemented by a TM.
c) Describe the composition C of R with Oracle (the purported TM that decides L1).
d) Show that C does correctly decide L1 iff Oracle exists.

We do this by showing that
C is correct. I.e.,
i) If x ∈ L1, then C(x) accepts, and
ii) If x ∉ L1, then C(x) rejects.

13) Rice's Theorem: If P is a non-trivial (Boolean) property of DS languages,
it is undecidable.

Notice that the TM's
function computes with

strings (Σ* ↦ Σ′*), not
directly with numbers.

In some sense, ≤
means "is no harder
than" or "is at least as
decidable as"

Algorithms and decision problems for regular languages Algorithms and decision problems for context-free languages

