
MA/CSSE 474  Final Exam  Notation and Formulas page      Name ________________    (turn this in with your exam) 

Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet Σ; while a, b, c, d are individual alphabet symbols. 
 

DFSM notation: M= (K, Σ, δ, s, A), where: 
   K is a finite set of states, Σ  is a finite alphabet 
   s ∈ K is start state,    A ⊆ K is set of accepting states 
   δ: (K × Σ) → K  is the transition function 

Extend δ's definition to δ: (K × Σ*) → K by the recursive definition δ(q, ε)=q,     
 δ(q, xa) = δ(δ(q, x), a) 
M accepts w iff  δ(s, w) ∈ A.      L(M) = {w ∊ Σ* : δ(s, w) ∊ A} 
Alternate notation:   

(q, w) is a configuration of M. (current state, remaining input) 
The yields-in-one-step relation: |-M  : 
 (q, w)  |-M  (q', w') iff  w = a w' for some symbol a ∈ Σ, and δ (q, a) = 
q'  
The yields-in-zero-or-more-steps relation: |-M*  is the reflexive, transitive 
closure of |-M . 
A computation by M is a finite sequence of configurations C0, C1, …, Cn for some n ≥ 0 such that: 

    • C0 is an initial configuration, 
    • Cn is of the form (q, ε), for some state q ∈ KM, 
    • ∀i∈{0, 1, …, n-1} (Ci  |-M  Ci+1) 

       M accepts w iff the state that is part of the last step in w is in A.   
A language L is regular if L=L(M) for some DFSM M. 
In an NDFSM, the function δ is replaced by the relation Δ:    Δ ⊆ (K × (Σ ∪ {ε})) × K 
Equivalent strings relative to a language:  Given a language L, two strings w and x in ΣL* are indistinguishable with respect to L, written w≈Lx,  iff  
∀z ∈ Σ* (xz ∈ L iff yz ∈ L). 
[x] is a notation for "the equivalence class that contains the string x". 
The construction of a minimal-state DSFM based on ≈L: 

M = (K, Σ, δ, s, A), where K contains n states, one for each equivalence class of ≈L.  
s = [ε], the equivalence class containing ε under ≈L,   
A = {[x] : x ∈ L},      
δ([x], a) = [xa].   

Enumerator (generator) for a language: when it is asked, enumerator gives us the next element of the language.  Any given element of the language will 
appear within a finite amount of time.  It is allowed that some may appear multiple times. 
Recognizer: Given a string s, recognizer halts and accepts s if s is in   the language. If not, recognizer either halts and rejects s or keeps running forever.  
This is a semidecision procedure.  If recognizer is guaranteed to always halt and  
 (accept or reject) no matter what string it is given as input, it is a decision procedure. 
The regular expressions over an alphabet Σ are the strings that can be obtained as follows: 
1. ∅ is a regular expression. 
2. ε is a regular expression. 
3. Every element of Σ is a regular expression. 
4. If α , β are regular expressions, then so is αβ. 
5. If α , β are regular expressions, then so is α∪β. 
6. If α is a regular expression, then so is α*. 
7. α is a regular expression, then so is α+. 
8. If α is a regular expression, then so is (α). 
 
Recursive formula for constructing a regular expression from a DFSM: rijk is rij(k-1) ∪ rik(k-1)(rkk(k-1))*rkj(k-1) 

The set of regular languages is closed under complement, intersection, union, set difference, concatenation, Kleene * and +, reverse 
 

Pumping Theorem and its contrapositive: 
  
 
  

Reg. exp. operator precedence (High to Low): 
      parenthesized expressions, * and +, concatenation, union 

The contrapositive form: 
(∀k ≥ 1      
   (∃ a string w ∈ L 
       (|w| ≥ k and  
           (∀ x, y, z  
             (  (w = xyz ∧  |xy| ≤ k ∧ y ≠ ε) →  
                 ∃q ≥ 0 (xyqz is not in L)  
             ) )  )  )) 
→ L is not regular  

Functions on languages: 
firstchars(L) = {w : ∃y∈L (y = cx, c ∈ ΣL, x ∈ ΣL*, and w ∈ c*)} 
chop(L) =  {w : ∃x∈L  (x = x1cx2,  x1 ∈ ΣL*,  x2 ∈ ΣL*, c ∈ ΣL |x1| = |x2|, and w = x1x2)} 
maxstring(L) =  {w: w ∈ L,  ∀z ∈Σ* (z ≠ ε → wz ∉ L)} 
mix(L) =   {w: ∃x, y, z   (x ∈ L,  x = yz,  |y| = |z|,  w = yzR)} 
middle(L) = {x: ∃y, z ∈ Σ* (yxz ∈ L)} 
alt(L) = {x: ∃y,n (y ∈ L , |y| = n, n > 0, y = a1…an,∀i ≤ n (ai ∈ Σ), and  
                    x = a1a3a5…ak, where k = (if n is even then n-1 else n))} 
 
 

Formally, if L is regular, then  
∃k ≥ 1 such that  
    (∀ strings w ∈ L,  (|w| ≥ k  →   
         (∃ x, y, z (w = xyz, |xy| ≤ k,  y ≠ ε, and      
                 ∀q ≥ 0 (xyqz is in L))))) 
 



CFG definition: G = (V, Σ, R, S) 
(vocabulary, terminals, rules, start symbol) 
Derivation and language definition 
One derivation step:  x ⇒G y iff ∃α,β,γ∈V*, A∈N ((x = αAβ) ∧ (A → γ ∈ R) ∧ (y = α γ β)) 

⇒G* is the reflexive, transitive closure of ⇒G 

The language defined by a grammar: L(G) = {w ∈ Σ* : S ⇒G* w} 
L is context-free if there is a context-free grammar G such that L = L(G).    

A parse tree, derived from a grammar G = (V, Σ, R, S), is a rooted, ordered tree in which: 

  Every leaf node is labeled with an element of Σ ∪ {ε}, 
  The root node is labeled S,  
  Every other node is labeled with an element of N, and 
  If m is a non-leaf node labeled X and the (ordered) children of m are labeled x1, x2, …, xn,  

then R contains the rule     X → x1 x2, … xn. 
Chomsky Normal Form, in which all rules are of one of the following two forms:  

X → a, where a ∈ Σ,  or   X → BC, where B and C are elements of V - Σ. 
Greibach Normal Form, in which all rules are of the form X → a β, where a ∈ Σ and β ∈ N*. 
A grammar is ambiguous if some string it generates has two different parse trees 

Equivalently, two different leftmost derivations, or two different rightmost derivations 
A CFL is inherently ambiguous if every CFG that generates it is ambiguous. 
PDA definition: M = (K, Σ, Γ, ∆, s, A),  
                states, input alphabet, tape alphabet, transition relation, start state, accepting states 

(q1, cw, γ1γ) |-M (q2, w, γ2γ) iff ((q1, c, γ1), (q2, γ2)) ∈ ∆.   
accepting computation of M: (s, w, ε) |-M* (q, ε, ε), and  q ∈ A 
Top-down PDA from grammar: Production A  XYZ becomes (q, ε, A)  (q, XYZ) 
(s, ε, ε)  (q, S)  [s is the start state of M).  A ={q} .  For each terminal,  (q, a, a)  (q, ε)  
Bottom-up PDA from grammar:  The shift transitions: ((p, c, ε), (p, c)), for each c ∈ Σ. 
The reduce transitions: ((p, ε, (s1s2…sn.)R), (p, X)), for each rule   X → s1s2…sn. in G. . 
The finish-up transition: ((p, ε, S), (q, ε)).        A = {q}   
CFL closure: Union, Concatenation,  Kleene Star. Reverse. Intersection with regular language.  
Not closed under complement, intersection, set difference.   
We have CFL decision algorithms for membership, emptiness, finiteness. 
Undecidable questions about CFLs:  Is L = Σ*?   Is L regular?  Is L1 = L2? Is L1 ⊆ L2? Is L1 ∩ L2 = ∅? 
Is the complement of L context-free?  Is L1 ∩ L2 = ∅? Is L inherently ambiguous? Is G ambiguous? 
Deterministic PDA M: ∆M contains no pairs of transitions that compete with each other, and 
whenever M is in an accepting configuration it has no available moves. 
A language L is deterministic context-free iff L$ can be accepted by some deterministic PDA.   
Formal TM definition.  A deterministic TM M is (K, Σ, Γ, δ, s, H): 

i) K is a finite set of states; 
ii) Σ is the input alphabet, which does not contain ☐; 
iii) Γ is the tape alphabet, which must contain ☐ and have Σ as a subset.   
iv) s ∈ K is the initial state; 
v) H ⊆ K is the set of halting states; 
vi) δ is the transition function:   

(1) (K - H)         ×  Γ         to       K  ×    Γ   × {→, ←} 
non-halting  × tape    →     state × tape    ×         direction to move 
 state              char     char             (R or L) 

Yields. (q1, w1) |-M (q2, w2) iff (q2, w2) is derivable, via δ, in one step. 
|-M* is the reflexive, transitive closure of |-M. 
Configuration C1 yields configuration C2 if:  C1  |-M*  C2. 
A path through M is a sequence of configurations C0, C1, …, Cn for some n ≥ 0 such that C0 is the init config and  C0 |-M  C1 |-M  C2 |-M … |-M  Cn. 
A computation by M is a path that halts.  If a computation is of length n (has n steps), we write:  C0 |-Mn  Cn 

 
2) TMs as language recognizers.   Let M = (K, Σ, Γ, δ, s, {y, n}).  

a) M accepts a string w iff (s, qw) |-M*  (y, w′) for some string w′. 
b) M rejects a string w iff   (s, qw) |-M*  (n, w′) for some string w′. 
c) M decides a language L ⊆ Σ* iff for any string w ∈ Σ*t: 

i)         if w ∈ L then M accepts w, and 
ii)         if w ∉ L then M rejects w. 

d) A language L is decidable iff thewre is a TM M that decides it.   
e) We define the set D to be the set of all decidable languages. 

f) M semidecides L iff, for any string w ∈ ΣM*: 
i) w ∈ L → M accepts w 
ii) w ∉ L → M does not accept w.  M may reject or  not halt. 

g) A language L is semidecidable iff there is a Turing machine that 
semidecides it.   

h) We define the set SD to be the set of all semidecidable 
languages.   

  

contrapositive of CFG Pumping Theorem: 
If ∀k ≥ 1 (∃ a string w ∈ L, where |w| ≥  
   (∀ u, v, x, y, z   
       ( (w = uvxyz, vy ≠ ε, and  |vxy| ≤ k)  
            implies 
  ( ∃ q ≥ 0 (uvqxyqz is not in L))))), 
    then L is not context-free 
 



Additions since Exam 3: 
 
3) TMs can compute functions.   Let M = (K, Σ, Γ, δ, s, {h}).  

a) M(w) = z iff (s, ☐w) |-M*  (h, ☐z).   
b) Let Σ′ ⊆ Σ be M’s output alphabet, and let f be any function from Σ* to Σ′*.   

i) M computes f iff, for all w ∈ Σ*: 
(1) if w is an input on which f is defined, then M(w) = f(w). 
(2) otherwise M(w) does not halt. 

c) A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts. 
d) Computing numeric functions:  

i) For any positive integer k, valuek(n) returns the nonnegative integer that is encoded, base k, by the string n.   
ii) TM M computes a function f from ℕm to ℕ iff, for some k, valuek(M(n1;n2;…nm)) = f(valuek(n1), … valuek(nm)). 

4) An m-tape TM can be simulated by a 2n-track TM, which can be simulated by a single-track machine. 
5) Encoding a TM M = (K, Σ, Γ, δ, s, H)  as a string <M>: 

i) Encoding the states: Let i be log2(|K|). 
(1)  Number the states from 0 to |K|-1 in binary (i bits for each state number):   
(2)  The start state, s, is numbered 0;  Number the other states in any order.  
(3)  If t′ is the binary number assigned to state t, then: 

(a)  If t is the halting state y, assign it the string yt′. 
(b)  If t is the halting state n, assign it the string nt′. 
(c)  If t is the halting state h, assign it the string ht′. 
(a)  If t is any other state, assign it the string qt′. 

ii) Encoding the tape alphabet:  Let j be log2(|Γ|). 
(1) Number the tape alphabet symbols from 0 to |Γ| - 1 in binary.   
(2) The blank symbol is number 0. 
(3) The other symbols can be numbered in any order 

iii) Encoding the transitions:   
(1) (state, input, state, output, direction to move) 
(2) Example:  (q000,a000,q110,a000,→) 

iv) Encoding s and H (already included in the above) 
v) A special case of TM encoding 

(1) One-state machine with no transitions that accepts only ε is encoded as (q0) 
vi) Encoding other TMs:  It is just a list of the machine's transitions: 

(1) Detailed example on slide 
vii) Consider the alphabet Σ = {(, ), a, q, y, n, h, 0, 1, comma, →, ←}.  

The following question is decidable: 
(1) Given a string w in Σ*, is there a TM M such that w = <M> ? 

6) We can enumerate all TMs, so that we have the concept of  "the ith TM". 
7) Specification of U, the Universal Turing Machine (UTM): 

a) U starts with <M,w> on its input tape, then simulates M's action when it has input w: 
b) U halts iff M halts on w. 
c) If M is a deciding or semideciding machine, then: 

i) If M accepts, U accepts.     If M rejects, U rejects. 
d) If M computes a function, then U(<M, w>) must equal M(w). 

8) A language is in SD iff it is Turing enumerable. 
A language is in D iff it is lexicographically enumerable. 

9) D is closed under complement.  SD is not;  if L∈SD-D, ¬L∉SD.  ¬H is an example.    
10) Problem P1 is reducible to problem P2 (written P1 ≤ P2) if there is a Turing-computable  
11) function f that finds, for an arbitrary instance I of P1, an instance f(I) of P2, and  

a) f is defined such that for every instance I of P1,  
b) I is a yes-instance of P1 if and only if f(I) is a yes-instance of P2. 
c) So P1 ≤ P2 means "if we have a TM that decides P2, then there is a TM that decides P1. 

12) A framework for using reduction to show undecidability.  To show language L2 undecidable:  
a) Choose a language L1 that is already known not to be in D, and show   

that L1  can be reduced to L2. 
b) Define the reduction R and show that it can be implemented by a TM. 
c) Describe the composition C of R with Oracle (the purported TM that decides L1). 
d) Show that C does correctly decide L1 iff Oracle exists.   

We do this by showing that  
C is correct.  I.e.,  
i) If x ∈ L1, then C(x) accepts, and 
ii) If x ∉ L1, then C(x) rejects. 

13) Rice's Theorem:  If P is a non-trivial (Boolean) property of DS languages,  
it is undecidable. 

 

 

 

Notice that the TM's  
function computes with 

strings (Σ* ↦ Σ′*),  not 
directly with numbers. 

In some sense, ≤ 
means "is no harder 
than" or "is at least as 
decidable as" 
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