MAJ/CSSE 474 Final Exam Notation and Formulas page

Name (turn this in with your exam)

Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet ; while a, b, c, d are individual alphabet symbols.

DFSM notation: M= (K, %, §, s, A), where:
K is a finite set of states, T is a finite alphabet

ndfsmtodfsm(M: NDFSM) =
1. For each state g in K, do:
1.1 Compute eps(q).

s e K is start state, A K is set of accepting states g g:memfé,_
8: (K x £) - K is the transition function " 3.1 active-states = {s}.
Extend &'s definition to 8: (K x *) — K by the recursive definition 3(q, €)=q, 328 =4a.

3.3 While there exists some element Q of active-states for
which &"has not yet been computed do:
For each character cin £, do:
new-state = .
For each state g in Q do:
For each state p such that (g, ¢, p) = A do:

5(q, xa) = 5(5(a, x), a)
M accepts w iff 3(s, w) € A.
Alternate notation:
(g, w) is a configuration of M. (current state, remaining input)
The yields-in-one-step relation: |-m : new-state = new-state . eps(p).

(9, w) |-v (g', w") iff w=aw'for some symbol a € =, and § (g, a) = Add the transition (g, ¢, new-state) to &'
' If new-state ¢ active-states then insert it.

- . . . . S 4. K' = active-states.
The yields-in-zero-or-more-steps relation: |-w* is the reflexive, transitive 5A={QeK:QrA%a}
closure of |-m.

A computation by M is a finite sequence of configurations Co, Ci,
« Co is an initial configuration,
« Cn is of the form (q, €), for some state q € Kw,
*Vie{0,1,...,n-1} (Ci |m Ci+)
M accepts w iff the state that is part of the last step in w is in A.
A language L is regular if L=L(M) for some DFSM M.
In an NDFSM, the function 8 is replaced by the relation A: A S (K x (2 U {g})) x K
Equivalent strings relative to a language: Given a language L, two strings w and x in .* are indistinguishable with respect to L, written w~rx, iff
VzeZ*(xze Liffyz el).
[X] is a notation for "the equivalence class that contains the string x".
The construction of a minimal-state DSFM based on ~L:
M= (K, Z, 8, s, A), where K contains n states, one for each equivalence class of ~L.
s = [&], the equivalence class containing € under ~,
A={[x]:x e L},
3([x], a) = [xa].
Enumerator (generator) for a language: when it is asked, enumerator gives us the next element of the language. Any given element of the language will
appear within a finite amount of time. It is allowed that some may appear multiple times.
Recognizer: Given a string s, recognizer halts and accepts s if sis in the language. If not, recognizer either halts and rejects s or keeps running forever.
This is a semidecision procedure. If recognizer is guaranteed to always halt and
(accept or reject) no matter what string it is given as input, it is a decision procedure.
The regular expressions over an alphabet X are the strings that can be obtained as follows:
1. Jis aregular expression.
2. g is aregular expression.
3. Every element of X is a regular expression.
4. 1f o, B are regular expressions, then so is af.
5. If o, B are regular expressions, then so is ap.
6. If o is a regular expression, then so is o*.
7. o is a regular expression, then so is a*.

8. If o is a regular expression, then so is (o).

L(M) = {w € 2* : §(s, w) € A}

..., Cn for some n > 0 such that:

Reg. exp. operator precedence (High to Low):
parenthesized expressions, * and *, concatenation, union

Functions on languages:
firstchars(L) ={w :3dyel (y=cx,c € Z;,, x € Z;*, and w € c*)}
chop(L) = {w:3xel (x=xicx2, X1 € Z,%, x2 € %, c € Z; |x1] = |x2], and w = x1x2)}
maxstring(L)= {(w:w e L, VzeX*(zze—>wz ¢ L)}
mix(L)= {w:3x,y,z (xel, x=yz, |y| =|z|, w=yzR)}
middle(L) = {x: y, z € T* (yxz € L)}
alt(L)={x:3y,n(y e L, |yl =n,n>0,y=ai..an,Vi<n (ai € X), and
X = 1030s...ax, Where k = (if n is even then n-1 else n))}
Recursive formula for constructing a regular expression from a DFSM: rijk iS Tijk-1) U Fik(k-1) (Fkk(k-1)) *Tki(k-1)
The set of regular languages is closed under complement, intersection, union, set difference, concatenation, Kleene * and +, reverse

Pumping Theorem and its contrapositive:

Formally, if L is regular, then The contrapositive form:

Jk > 1 such that (Vk=1
(Vstringswe L, (lw|=>k > (Hastringw e L
(3x,y,z(w=xyz, |xy| <k, y+#¢, and (Iw| > k and
Vg >0 (xy%zisin L)) (Vxyz

(w=xyzA |xy|<kAy=eg)—
3q >0 (xy% is notin L)
))) )

— L is not regular




CFG definition: G=(V, 5, R, S)

(vocabulary, terminals, rules, start symbol)

Derivation and language definition

One derivation step: x =>¢ y iff 3a,B,yEV*, AEN ((x = OLAB) AA—>YER)A(y=OQY B))
—>c* is the reflexive, transitive closure of —=>¢

The language defined by a grammar: L(G) = {w € 2* : § =>¢* w}

L is context-free if there is a context-free grammar G such that L = L(G).

A parse tree, derived from a grammar G = (V, 2, R, 5), is a rooted, ordered tree in which:

Every leaf node is labeled with an element of 2 U {g},
The root node is labeled S,
Every other node is labeled with an element of N, and
If mis a non-leaf node labeled X and the (ordered) children of m are labeled x1, xa, ...
then R contains therule X — x1 X2, ... Xn.
Chomsky Normal Form, in which all rules are of one of the following two forms:
X —a,wherea € X, or X— BC, where B and C are elements of V- X.
Greibach Normal Form, in which all rules are of the form X — a 3, where @ € ¥ and § € N*.
A grammar is ambiguous if some string it generates has two different parse trees
Equivalently, two different leftmost derivations, or two different rightmost derivations
A CFL is inherently ambiguous if every CFG that generates it is ambiguous.
PDA definition: M= (K, 2, T, A, s, A),
states, input alphabet, tape alphabet, transition relation, start state, accepting states

(G2, cw, 1Y) |-m (g2, W, v2y) iff (g1, € 11), (92, 72)) € A.
accepting computation of M: (s, w, &) [-m* (q, & &), and q € A
Top-down PDA from grammar: Production A - XYZ becomes (q, €, A) = (q, XYZ)
(s, € €)= (q,S) [sisthe start state of M). A={q}. For each terminal, (g, a, a) 2 (q, €)
Bottom-up PDA from grammar: The shift transitions: ((p, ¢, €), (p, c)), for each c € Z.
The reduce transitions: ((p, €, (5152...50.)F), (p, X)), for each rule X — s155...5,. in G. .
The finish-up transition: ((p, €, S), (g, €))- A={q}
CFL closure: Union, Concatenation, Kleene Star. Reverse. Intersection with regular language.
Not closed under complement, intersection, set difference.
We have CFL decision algorithms for membership, emptiness, finiteness.
Undecidable questions about CFLs: Is [ = X*? IsLregular? Isl;=[,?IsL1 C L2 Isli ML =?
Is the complement of L context-free? Is Ly N L, = D? Is L inherently ambiguous? Is G ambiguous?
Deterministic PDA M: Ay, contains no pairs of transitions that compete with each other, and
whenever M is in an accepting configuration it has no available moves.
A language L is deterministic context-free iff LS can be accepted by some deterministic PDA.
Formal TM definition. A deterministic TM M is (K, %, I, 9, s, H):

i) Kis afinite set of states;

» Xn,

ii) X is the input alphabet, which does not contain [J;

iii) T is the tape alphabet, which must contain [ and have X as a subset.

iv) s e Kis the initial state;

v) HcCKisthe set of halting states;

vi) & isthe transition function:

(1) (K-H) x I’ to K x I X {—, «}

non-halting x tape — state x tape x direction to move
state char char (Rorl)

Yields. (g1, wi1) |-m (g2, wa) iff (g2, wa) is derivable, via 3, in one step.
|-m* is the reflexive, transitive closure of |-p.
Configuration C; yields configuration C, if: C; |-u* Ca.

Summary of Algorithms

» Compute functions of languages defined as FSMs:

« Given FSMs M, and M., construct a FSM M, such that
L(Ms) = L(My) w L(M,).

e Given FSMs M, and M., construct a new FSM M, such that
L(M;) = L(M.) L(M,).

» Given FSM M, construct an FSM M* such that
L(M") = (L(M))".

e Given a DFSM M, construct an FSM M* such that
L(M*) = —L(M).

« Given two FSMs M, and M., construct an FSM M, such that
L(Ms) = L(My) ~ L(M;).

+ Given two FSMs M; and M, construct an FSM M, such that
L(M;) = L(M,) - L(M,).

e Given an FSM M, construct an FSM M* such that
L{M*) = (LMY~

# Given an FSM M, construct an FSM M* that accepts
fetsub(L(M)).

» Converting between FSMs and regular expressions:
# Given a regular expression «, construct an FSM M
such that:

» Given an FSM M, construct a regular expression o
such that:
L(a) = L(M)

e Algorithms that implement operations on languages
defined by regular expressions: any operation that
can be performed on languages defined by FSMs can
be implemented by converting all regular expressions to
equivalent FSMs and then executing the appropriate
FSM algorithm.

# Converting between FSMs and regular expressions:
e Given a regular expression «, construct an FSM M
such that:

L(er) = L(M)

e Given an FSM M, construct a regular expression o
such that:
L(a) = L(M)

» Algorithms that implement operations on languages
defined by regular expressions: any operation that
can be performed on languages defined by FSMs can
be implemented by converting all regular expressions to
equivalent FSMs and then executing the appropriate
FSM algerithm.

e Given a regular grammar G, construct an FSM M
such that:
L(G) = L(M)

e Given an FSM M, construct a regular grammar G
such that:
L(G) = L(M).

contrapositive of CFG Pumping Theorem:
If vk>1 (3 astringw e L, where |w| >
~Mu,v,xvy,z
((w=uvxyz, vy # ¢, and |vxy| <K)
implies
(3 g=0 (uvixy9z is not in L))))),
then L is not context-free

A path through M is a sequence of configurations Co, Cy, ..., C, for some n > 0 such that Cp is the init configand Co |-m Ci |-m G |-m oo |-m G
A computation by M is a path that halts. If a computation is of length n (has n steps), we write: Co |-m" Co

2) TMs as language recognizers. Let M= (K, %, T, J, s, {y, n}).
a) M accepts a string w iff (s, aw) |-m* (y, w') for some string w'. f)
b) M rejects a string wiff (s, aw) |-u* (n, w') for some string w'. i)
c) Mdecides alanguage L < X* iff for any string w € Z*t: ii)
i) if w e L then M accepts w, and g)
ii) if w ¢ L then M rejects w.
d) Alanguage L is decidable iff thewre is a TM M that decides it. h)

We define the set D to be the set of all decidable languages.

M semidecides L iff, for any string w € Zp*:
w e L — M accepts w

w ¢ L — M does not accept w. M may reject or not halt.
A language L is semidecidable iff there is a Turing machine that
semidecides it.

We define the set SD to be the set of all semidecidable
languages.



Additions since Exam 3:

3)

4)

6)
7)

8)

9)
10)
11)

12)

13)

TMs can compute functions. Let M = (K, %, T, §, s, {h}).
a)  M(w)=ziff (s, Ow) |-»* (h, Oz).
b) LetX < X be M’s output alphabet, and let f be any function from * to X'*.
i) M computes f iff, for all w € X*:
(1) if wisaninput on which fis defined, then M(w) = f(w).
(2) otherwise M(w) does not halt.

Notice that the TM's
function computes with

strings (Z* = X'*), not
directly with numbers.

c)  Afunction fis recursive or computable iff there is a Turing machine M that computes it and that always halts.

d) Computing numeric functions:

i) For any positive integer k, valuex(n) returns the nonnegative integer that is encoded, base k, by the string n.
i)  TM M computes a function f from N™ to N iff, for some k, valuex(M(n1;nz;...nm)) = flvalue(ni), ... valuer(nm)).

An m-tape TM can be simulated by a 2n-track TM, which can be simulated by a single-track machine.

EncodingaTM M = (K, %, T, §, s, H) as a string <M>:
i) Encoding the states: Let i be[log2(|K|)].

(1)  Number the states from 0 to |K|-1 in binary (i bits for each state number):
(2) The start state, s, is numbered 0; Number the other states in any order.
(3) Ift'is the binary number assigned to state t, then:

(a) If tis the halting state y, assign it the string yt'.
(b) If tis the halting state n, assign it the string nt'.
(c) Iftisthe halting state h, assign it the string ht'.
(a) If tis any other state, assign it the string qt’.

i)  Encoding the tape alphabet: Let;be[log2(|r|)].

(1) Number the tape alphabet symbols from 0 to || - 1 in binary.
(2) The blank symbol is number 0.
(3) The other symbols can be numbered in any order

iii)  Encoding the transitions:
(1) (state, input, state, output, direction to move)
(2) Example: (q000,a000,q110,a000,—)

iv) Encoding s and H (already included in the above)

v)  Aspecial case of TM encoding

1

vi)  Encoding other TMs: It is just a list of the machine's transitions:
(1) Detailed example on slide
vii) Consider the alphabet X={(,), a,q,y, n, h, 0, 1, comma, —, <}.

The following question is decidable:
(1) Given astring w in X*, is there a TM M such that w = <M>?
We can enumerate all TMs, so that we have the concept of "the ith TM".
Specification of U, the Universal Turing Machine (UTM):
a) U starts with <M,w> on its input tape, then simulates M's action when it has input w:

One-state machine with no transitions that accepts only € is encoded as (q0)

{<M=>:TM M has an even (B]
number of states }

H = [<M w> TMM halts on ) sD/D
H, = {<M>:TM M halts on =} SD/D
Hany — {=<M= :there exists at sD/D
least one string on which TM M halts }

Harp = {<M>:TM M halts on -SD
oL}

A= [<M, w> TM M accepts w} SD/D
A, = {<M>:TM M accepts £} SD/D
Aany {<M> : there exists at least SD/iD
one string that TM M accepts }

-H = {< M, w>:TM M does not -SD
halt on w}

Aar = {<M>:L(M)=ZI%} -SD
EqTMs = {<M,. My>: L(M,) -sD
= L(M.)}

H_sny = {<M>: there dues not 5D
exist any string on which TM M

halts}

{<M=:TM M does not halt on -5D
input <M>}

TMygn = {<M>:TM Mis -sD
minimal}

TMpgg = {‘*'ﬂrf:'-’ CL{M)yis -SD
regular}

Aube = {<M>:L(M)= A"B"} -SD

b) U halts iff M halts on w.
c) If Misa deciding or semideciding machine, then:
i) If M accepts, U accepts. If M rejects, U rejects.
d)  If M computes a function, then U(<M, w>) must equal M(w).
A language is in SD iff it is Turing enumerable.

In some sense, <
means "is no harder
than" or "is at least as
decidable as"

Hany is notin D

H = {<M, w=: TM M halts on input string w}
R

(?0racle) Hpyy = {<M> : there exists at least one string on which TM M halts}

A language is in D iff it is lexicographically enumerable.
D is closed under complement. SD is not; if LeSD-D, -L&SD. —H is an example.
Problem P1 is reducible to problem P, (written P1 < P3) if there is a Turing-computable
function f that finds, for an arbitrary instance | of P1, an instance f(I) of P2, and
a) fis defined such that for every instance | of Py,
b) lisayes-instance of P1if and only if f(I) is a yes-instance of P..
c)  So P;<P.means"if we have a TM that decides P, then there is a TM that decides P.
A framework for using reduction to show undecidability. To show language L. undecidable:
a) Choose a language L: that is already known not to be in D, and show

that L1 can be reduced to L,.
b)  Define the reduction R and show that it can be implemented by a TM.
c)  Describe the composition C of R with Oracle (the purported TM that decides Li).
d) Show that C does correctly decide L; iff Oracle exists.

We do this by showing that

Cis correct. l.e.,

i) If x € L1, then C(x) accepts, and

i) Ifx & L1, then C(x) rejects.
Rice's Theorem: If P is a non-trivial (Boolean) property of DS languages,
it is undecidable.

R(<M, w=) =
1. Construct <M#=, where M#x) operates as follows:
1.1. Examine x
1.2 If x =w, run M on w, else loop forever
2. Return </M#=.

If Oracle exists, then C = Oracle(R(<M, w=)) decides H
# R can be implemented as a Turing machine.
» Cis correct: The only string on which A# can haltis w. So:
o <M, w= € H: M halts on w. So M# halts on w. There exists at least one
string on which A# halts. Oracle accepts.
® <M, w= ¢ H: M does not halt on w, so neither does M#. So there exists
no string on which A# halts. Oracle rejects

But no machine to decide H can exist, so neither does Oracle.

A, = {<M> : L(M) = A"B"} is not SD

R(<M, w=) reduces —H to Agppn:

1. Construct the description <M#>:
1.1. If x € A"B" then accept. Else:
1.2. Erase the tape.
1.3. Write w on the tape.
1.4. Run Mon w.
1.5. Accept.

2. Return <M#>.

If Oracle exists and semidecides A..»., C = Oracle(R(<M, w=)) semidecides —H.
M# immediately accepts all strings in A"B". If M does not halt on
w, those are the only strings M# accepts. If M halts on w,
Mt accepts everything:

e <M, w> € —=H: M does not halt on w, so M# accepts strings in
A"B" in step 1.1. Then it gets stuck in step 1.4, so it accepts
nothing else. Itis an A"B" acceptor. Oracle accepts.

® <M, w> ¢ —H: M halts on w, so M# accepts everything.

Oracle does not accept.

But no machine to semidecide —H can exist, so neither does Oracle.




A Macro language for Turing Machines

(1) Define some basic machines  You need to learn this simple
language. | will use it and |
expect you to use it on HW
and tests.

For each x € T', define M,, written as just x, to be a machine
that writes x. Read-write head ends up in original position.

« Symbol writing machines

« Head moving machines

R: foreachx eI, &(s, x) = (h, x, =)
L: foreachx e, &(s, x)=(h, x, «)

« Machines that simply halt:
h,  which simply halts (don't care whether it accepts).
n,  which halts and rejects.
¥, which halts and accepts.

Turing Machines Macros Cont'd
Example:

>M1 a Mz
b

M

» Start in the start state of M,.

« Compute until M, reaches a halt state.

« Examine the tape and take the appropriate transition.

« Start in the start state of the next machine, etec.

» Halt if any component reaches a halt state and has no place
to go.

« If any component fails to halt, then the entire machine may fail
to halt.

Blank/Non-blank Search Machines

_—

Checking Inputs and Combining Machines

Next we need to describe how to:

« Check the tape and branch based on what character

we see, and
« Combine the basic machines to form larger ones.

To do this, we need two forms:

o My M,

« M, <condition> M,

More macros

a

M, becomes My o M-
- LN
b
M; sl slems of T, M becomes M My
or
Ny Ms

Variables
M; alslemsofr My becomes My xe-= M

=, -~ .

except a and x takes on the valus of

the current square

ab My becomes My xeax My

and x takes on the value of
the cumrent sguare

My, x-y M,
—_—
if x = y then take the transition

= xe-0 Rx if the current square is not blank, go right and copy it.
_

More Search Machines

L. Find the first occurrence of a to
the left of the current square.

R.x Find the first occurrence of a orb
to the right of the current square.

Lip —a M, Find the first occurrence of 2 orb

to the left of the current square,
b then go to M, if the detected

] Rf \I 4 Find the first blank square to R
R, h the right of the current square. 2
- Ld. x| Find the first blank square to L

./ the left of the current square. d
N )

R JO Find the first nonblank square to R
x_/ the right of the current square. -
-~ Find the first nonblank square to

=L )4 the | Lo
g e left of the current square

character is a; go to M, if the

M- detected character is b

Lycap Find the first occurrence of a orkb
to the left of the current square
and set x to the value found.

LycapRx Find the first occurrence of 2 ork

to the left of the current square,
set x to the value found, move one

square to the right, and write x (2 or k).




Algorithms and decision problems for regular languages

Because there are so many of these algorithms and they have been spread out over
\_ ceral chapters, we present a concise list of them here:
se!

: Algorithmf' that operate on FSMs without altering the language that is accepted:

i . Ndfsmiodfsm: Given an NDESM M, construct a DFSM M’ such that L (M)
= L(M'). . )
MinDESM: Given a DFSM M, construct a minimal DFSM M', such that L (M)
= L{M).

Algorithms that compute functions of languages defined as FSMs:

o Given two FSMs M, and M, comstruct a new FSM M such that L (Mz) =
L (M';) UL (Mi) X

« Given two FSMs M; and M, construct a new FSM M, such that
L (Ms) = L (ML (My) (ie.,the concatenation of L (M) and L (M))).

« Given an FSM M, construct a new FSM M' such that L (M"y = (L (M))*.

« Given an FSM M, construct a new FSM M’ such that L (M") = ~L (M).

« Given two FSMs M; and M,, construct a new FSM Ms such that L (Ms) =
L (M) O L (My).

o Given two FSMs M; and M,, construct a new FSM M, such that L (M) =

L (M) = L (Mh). ' o

Given an FSM M, construct a new FSM M' such that L (M") = (L (M))" (e,

the reverse of L{M)).

Given an FSM M, construct an FSM M' that accepts lefsub(L(})), where letsub

is a letter substitution function.

Algorithms that convert between FSMs and regular expressions:
e Given a regular expression a, construct an FSM M such that L (e) = L (M).

« Given an FSM M, construct a regular expression a such that L («) = L (M).

Algorithms that convert between FSMs and regular grammars:
« Given a regular grammar G, construct an FSM M such that L (G) = L (M).

o Given an FSM M, construct a regular grammar G such that L (G) = L (M).

Algorithms that implement operations on languages defined by regular expres-
sions or regular grammars: Any operation that can be performed on languages de-
fined by FSMs can be implemented by converting all regular expressions or
regular grammars to equivalent FSMs and then executing the appropriate FSM
algorithm,

Decision procedures that answer questions about languages defined by FSMs:
* Given an FSM M and a stringw ,isw is accepted by M?
¢ Givenan FSM M.,is L (M) = &7

* Givenan FSM M,is L (M) = 247

Given an FSM M, is L(M) finite (or infinite)?
Given two FSMs, M and M, is L (M) = L (M,)?
Given a DFSM M, is M minimal?

-

Decision procedures that answer questions about languages defined by p,
expressions or regular grammars: Again, convert the regular expressions or 1.
grammars to FSMs and apply the FSM algorithms. g

s Decision procedures that answer questions about CONLERT-ITEE IAUBUAEES:

Algorithms and decision problems for context-free languages

*  Algorithms that transform grammars!

»  removennproductive(G: context-free grammar): Construct a grammar
contains no unproductive nonterminals and such that L (G') = L (G)-

o removennreachable( G context-free grammar): Construct a grammar @
contains no unreachable nonterminals and swch that L (G") = L ().

o removeEps(G: context-free grammar): Construct a grammar G’ that contains
no rules of the form X — ¢ and such that L (G") = L (G) - {&}.

o atmostoneEps(G: context-free grammar): Construct a grammar G’ that con-
tains no rules of the form X — & except possibly §* — &, in which case there
are no rules whose right-hand side contains §*, and such that L (G') = L (G).

o converttoChomsky(G: context-free grammar): Construct a grammar G' in
Chomsky normal form, where L (G") = L (G) — {&}.

o converttoGreibach(G: context-free grammar): Construct a grammar G’ in
Greibach normal form, where L (G") = L(G) — {&}.

s removeUnits(G: context-free grammar): Construct a grammar G' that contains
no unit productions, where L (G') = L (G).

Algorithms that convert between context-free grammars and PDAs:

o cfgtoPDAropdown(G: context-free grammar): Construct a PDA M such that
L (M) = L (G)and M operates top-down to simulate a left-most derivation in G.

o cfgtoPDAbottomup(G: context-free grammar): Construct a PDA M such that

L (M) = L(G) and M operates bottom up to simulate, backwards, a right-
most derivation in G.

o cfgtoPDAnoeps(G:contexi-free grammar): Construct a PDA M such that M con-
tains no transitions of the form ((gy, &, 51). (g2, 8,)) and L (M ) = L(G) — {&}.

Algorithms that transform PDAs:
o convertPDAtorestricted( M: PDA): Construct a PDA M’ in restricted normal
form where L (M') = L (M).

Algorithms that compute functions of languages defined as context-free grammars:

¢ Given two grammars (; and G, construct a new grammar Gy such that
L (G;) = L(G)UL(Gy).

* Given two grammars G, and G; construct a new grammar Gj such that

L(Gy) = L (G)L (Gy).

Given a grammar G, construct a new grammar G' such that L (G') = (L (G))*.

* Given a grammar G, construct a new grammar G' such that L (G') = (L (G)}.

Given a grammar G, construct a new grammar G’ that accepts letsub(L(G)),
where letsub is a letter substitution function.

Miscellaneous algorithms for PDAs:

intersectPDAandFSM (My: PDA, My FSM): Construct a PDA M; such that
L (M) = L (M) N L (M,).

without§(M: PDA): If M accepts L§, construct a PDA M" such that L (M') = L.

complementdetPDA(M: DPDA): If M accepts L$, construct a PDA M’ such
that L (M') = (~L)$.

decideCFLusingPDA(L: CFL, w :string): Decide whether wisin L,
decideCFLusingGrammar(L: CFL, string): Decide whether w is in L3
decideCFL(L: CFL, w:string): Decide whether w isin L.
decideCFLempty(G: context-free grammar): Decide whether L (G) = o8
decideCF Linfinite(G: context-free grammar ): Decide whether L(G) i5 iy



