MAJ/CSSE 474 Exam 3 W.inter 2009-10 Name Solution

1.

(28 points) For each of the following statements, circle T or F to indicate whether it is True or False.

If it is sometimes False, you should choose False.

You do not have to give proofs or counterexamples.

For each part, you get 2 points for circling IDK (I don't know), 4 for circling the correct answer, and 0 for circling the
incorrect answer or leaving it blank. Reason: When you don't know something, knowing that you don't know counts
for something. In order o be lazy in writing this solution, I am using Theorem numbers from the textbook. Of course
I did not expect you to know them by number.

a) T F IDK IfRisregular and RLis context-free, then L is context-free
Let L be any non-context-free language, and R = &. Then RNL = &, which is CF
b) T F IDK IfRisregularand RNLis not context-free, then L is not context-free
This is the contrapositive of Theorem 13.7
c) T F IDK The complement of a context-free language cannot be context-free.
@ is context-free, and so is its complement, X*. Note that this does not contradict Theorem 13.6
d) T F IDK Every context-free language is decidable.
This is Theorem 14.1
e) T F IDK LetL besuch that, for eachw e L, there exists some DFSM that accepts w. Then L must be regular.

See the solution of Exam 2.

f) T F IDK IfL"is context-free, then L must be context-free.

g) LetL ={a": pisaprime integer}. Not context-free. But L*is aaa*m which is regular and thus context-free.
T F IDK If Lis context-free, then L™ must be context-free.
CFLs are closed under concatenation and Kleene star. L"=LL*

(32 points) For each of the following statements, circle

R if the language is regular,

CF-R if it is context-free but not regular,

NCEF if it is not context-free

IDK if you don't know. Scoring: Correct answer - 4, IDK - 2, incorrect answer - 0.

a) R CF-R NCF IDK WW"®={ww":w e {a,b}*}.

Example 8.11 shows it is not regular by pumping a* b* b* a. Generated by S—aSa | bSb | e.

b) R CF-R NCF IDK {u#v":uand v are binary encodings (no leading zeroes) of positive integers, where v=2u}
Context-free not regular. The key is that, if v = 2u, then <v> = <u>0. So every string in L has the form u#0u®. The
following context-free grammar generates L:

s—>1T71 /* u must start with 1 since no leading O’s.
T—>0T70|171|#0

Proof not regular is by pumping. Let w = 1’#01*. Then yis 1°, for some nonzero p, and it must occur in the initial
1 region. Pump in once. The resulting string is 1°"#01%. But it is not true that 1“0 = 2-(1**). So this string is not
inL.

c)

d)

f)

9)

h)

R CF-R NCF IDK {u#v:u,V e {a, b}* and 3xe{a, b}* (x is a substring of u and X" is a substring of v)

The key is that x can be equal to €. So, letting x be ¢, this expression can generate exactly the language

(au b)* # (a U b)*. If x takes on any other value, all we get is an alternative derivation for some string that can
be generated just from (a U b)* # (a U b)*. So L =(awu b)* # (a U b)*, which is regular.

R CF-R NCF IDK {w=xyz:xe 0* ye 1% 2z 0%, |x| = |z] and |y| = 2|z|}
Not context-free. Let w = 0* 1% 0.

1] 2] 3
If either v or y from the pumping theorem crosses regions, pump in once. The resulting string will violate the
form constraint and so not be in L. We now consider the other ways in which v and y could occur:
(1, 2), (1, 2), (2, 3), (3, 3): Pump in once. The lengths of the x and z regions will no longer be equal because one
changed and the other didn’t.
(2,2): Pump out. Since the length of the y region changed and the length of the z region didn’t, it will no
longer be true that |y| = 2-|z].
(1, 3): Not possible since |vxy| <k.

R CF-R NCF IDK L(G) where G is S—TSb |Th, T>Ta | €.
Regular (even though this particular grammar is not regular). L(G) = a*b*.

R CF-R NCF IDK —L, wherel={wcw":w € {a, b}*}.

L is deterministic context-free. (It can be accepted by a straightforward deterministic PDA that pushes until it
gets to the C, then pops matching characters (see Example 12.3.). The deterministic context-free languages are
closed under complement.

If —L were regular, then L would also be regular since the regular languages are closed under complement. But
we show that it is not by pumping. Let w = a‘ca®. Then yis a’, for some nonzero p, and it must occur in the
initial & region. Pump in once. The resulting string is @?ca. It is not in L because there are k+p a’s before the
C reading from the left but only k @’s before the C, reading from the right.

R CF-R NCF IDK {abict:ijk>0and2i+3j=k} [recall that =3 means "congruent mod 3"]
We can build an FSM or a regular expression for L by dividing its strings into three groups, one for each of the equivalence
classes of =3. Doing this, we get the regular expression:

(aaa)* b* (ccc)* U a (aaa)* b* cc (ccc)* u aa (aaa)* b* c (ccc)*

Notice that the number of b’s is not important. For any j, 3j=3 0.

R CF-R NCF IDK {w e {a, b, c}*: every a has a matching b and a matching ¢ somewhere in w, and no b
or C is considered to match more than one a}

Not context-free. If L were context-free, then L; = L N a*b*c* would also be context-free. But we show that it
is not by pumping. Let w = a" b*c.

11213
We break w into regions as shown above. If either v or y crosses numbered regions, pump in once. The resulting
string will not be in L; because it will violate the form constraint. We now consider the other ways in which v
and y could occur:

3.

(1,1): Pumpin once. The number of a’s went up, but the number of b’s didn’t so there is no longer a
matching b for every a.
(2,2): Pump out once. The number of b’s went down, but the number of a’s didn’t so there is no longer a
matching b for every a.
(3,3): Pump out once. The number of C’s went down, but the number of a’s didn’t so there is no longer a
matching c for every a.
(1,2): Pumpinonce. The number of @’s went up, but the number of C’s didn’t so there is no longer a
matching C for every a.
(2,3): Pump out once. The number of C’s went down, but the number of @’s didn’t so there is no longer a
matching C for every a.
(1,3): Not possible since |vxy| <k.
(10 points) Choose a language from problem 2 that is not context-free, and prove that it is not CF. You must use the
Pumping Theorem in your proof. [Hint (if you want it): For 3 points (plus | will immediately grade that part of
problem 2), 1 will tell you which part of #2 | think is the easiest one to use for this problem. And you will know that

the language in that problem is not CF.]
Could do either (d) or (h). Answers are above. If students choose one that is in fact CF, 0 points

(10 points) Design a Turing Machine that computes n % m (i.e., the remainder when integer n is divided by integer
m) in unary. If the input is 1",1™ (the comma is part of the input string), the output should be 1"*™. Your description
may include a transition diagram, one or more of our macro diagrams, and/or a clear English description of your
machine.

The burden is on you to convince me that your machine works.

Use a 2-tape machine. Tape 1 alphabet { 1, #, [J, ,} (last symbol is comma). Tape 2 alphabet { 1, (] }
Copy m to the second tape, while erasing it and the comma from the first tape.

Move left to the first non-blank symbol on each tape.
Repeat
Move right on both tapes. As long as there is a 1 on both tapes, replace the 1 on the Tape 1 with a #.
If a blank is encountered on Tape 1 before Tape 2:
Move left on both tapes
While Tape 1 symbol is not blank:
Write 1 in place of each # on Tape 1 and blank in place of each 1 on Tape 2
Move left on both tapes
Halt
If a blank is encountered on Tape 2 before (or at the same time as) a blank on Tape 1
Move left on both tapes
While Tape 1 symbol is not blank:
Write a blank in place of each # on Tape 1, and leave tape 2 unchanged
Move left on both tapes

1™™ js now on Tape 1. Tape 2 is blank.
This is what is supposed to happen when a multi-tape machine computes a function.

(15 points) Let L = {a"b*"c*'d” : p > m, and m, n > 1}
a) (3) What is the shortest string in L? abbcccdd
b) (6) Write a context-free grammar that generates L.
Here are Two solutions (there are others):
§— axdd, x - xd, Xx - axd, X - bbyccc, Yy » bbyccc, Y — ¢, or

Ss—asd, s — sd, s » amdd, M — bbccc, M — bbMmccc)

c) (6) Define a pushdown automaton that accepts L. Show a transition diagram.
altla b/e/bbb c/bbie d/ale d/ele

b algla o @ i b/ebbb >

>

(10 points) Consider the following PDA:
1/2/1 2/1/z

O fele . 2/efe

/e

a) (3) Give a concise description of L(M).
{1"2™:0<n<m} [Note: Only accepts when stack is empty]

b) (3) Is M deterministic? Justify your answer.
No. Whenever there is a 1 on the stack and the input symbol is 2, the two transitions from the start state to the other state
compete with each other.

c) (4)Is L(M) deterministic context-free? Justify your answer.
Yes. There exists a deterministic PDA that accepts L(M). It works similarly to the way M works except that, before it begins
reading input, it pushes a marker # onto the bottom of the stack. Then it only takes the 2 transitions that don’t pop a 1 if the
stack contains no 1’s. If students givet the wrong answer for a, and give an answer here that is consistent with that
answer, 2 points here.

(10 points) Give a short but careful English description of what this TM does.

b | b2

It replaces each occurrence of aba in its input string by aca,
4 points if student gives answer "replaces all a's with c's".

(5 points) Where does the "k™ in the Pumping Theorem for context-free languages come from?
[Hint: for a regular language, k is the number of states in a DFSM that recognizes the language.]

If the language is CF< it has a CFG. Let b be the "branching factor”, the maximum length of the RHS of any
production. Let N be the number of different nonterminals. Then k <= N

