Closed book and notes, except for three 8.5 x 11 sheets of paper (can be 2-sided).

No electronic devices, especially ones with headphones.

Scores:

Problem	Possible	Score
1	28	
2	32	
3	10	
4	10	
5	15	
6	10	
7	10	
8	5	
Total	120	

- 1. (28 points) For each of the following statements, circle T or F to indicate whether it is *True* or *False*. If it is sometimes False, you should choose False. You do not have to give proofs or counterexamples. For each part, you get 2 points for circling IDK (I don't know), 4 for circling the correct answer, and 0 for circling the incorrect answer or leaving it blank. Reason: When you don't know something, knowing that you don't know counts for something.
 - a) T F IDK If R is regular and $R \cap L$ is context-free, then L is context-free
 - b) T F IDK If R is regular and $R \cap L$ is not context-free, then L is not context-free
 - c) T F IDK The complement of a context-free language cannot be context-free.
 - d) T F IDK Every context-free language is decidable.
 - e) T F IDK Let L be such that, for each $w \in L$, there exists some DFSM that accepts w. Then L must be regular.
 - f) T F IDK If L⁺ is context-free, then L must be context-free.
 - g) T F IDK If L is context-free, then L⁺ must be context-free.
- 2. (32 points) For each of the following statements, circle

R if the language is regular,

CF-R if it is context-free but not regular,

NCF if it is not context-free

IDK if you don't know.

Scoring: Correct answer - 4, IDK - 2, incorrect answer - 0.

- a) R CF-R NCF IDK $WW^R = \{ww^R : w \in \{a,b\}^*\}.$
- b) R CF-R NCF IDK $\{u\#v^R : u \text{ and } v \text{ are binary encodings (no leading zeroes) of positive integers, where v=2u}\}$
- c) R CF-R NCF IDK $\{u \# v : u, v \in \{a, b\}^* \text{ and } \exists x \in \{a, b\}^* \text{ (x is a substring of u and } x^R \text{ is a substring of v)}$
- d) R CF-R NCF IDK $\{w = xyz : x \in 0^*, y \in 1^*, z \in 0^*, |x| = |z| \text{ and } |y| = 2 \cdot |z|\}$
- e) R CF-R NCF IDK L(G) where G is S \rightarrow TSb | Tb, T \rightarrow Ta | ε .
- f) R CF-R NCF IDK $\neg L$, where $L = \{w \in \mathbb{R}^R : w \in \{a, b\}^*\}$.
- g) R CF-R NCF IDK $\{a^ib^jc^k: i, j, k \ge 0 \text{ and } 2i + 3j = 3k\}$ [recall that \equiv_3 means "congruent mod 3"]
- h) R CF-R NCF IDK $\{w \in \{a, b, c\}^* : \text{every } a \text{ has a matching } b \text{ and a matching } c \text{ somewhere in } w, \text{ and no } b \text{ or } c \text{ is considered to match more than one } a\}$

3. (10 points) Choose a language from problem 2 that is not context-free, and prove that it is not CF. You		
	Pumping Theorem in your proof. []	Hint (if you want it): For 3 points (plus I will immediately grade that part of
	problem 2), I will tell you which pa	rt of #2 I think is the easiest one to use for this problem. And you will know that
	the language in that problem is not	CF.[
	Student "bought" the hint.	Which part are you doing?

4.	(10 points) Design a Turing Machine that computes $n \% m$ (i.e., the remainder when integer n is divided by integer m) in unary. If the input is $\mathbf{1^n,1^m}$ (the comma is part of the input string), the output should be $\mathbf{1^{n\%m}}$. Your description may include a transition diagram, one or more of our macro diagrams, and/or a clear English description of how your machine works. The burden is on you to convince me that your machine works.			

- 5. (15 points) Let $L = \{a^m b^{2n} c^{3n} d^p : p > m, \text{ and } m, n \ge 1\}$
 - a) (3) What is the shortest string in *L*?
 - b) (6) Write a context-free grammar that generates L.

c) (6) Define a pushdown automaton that accepts L.

6. (10 points) Consider the following PDA:

- a) (3) Give a concise description of L(M).
- b) (3) Is *M* deterministic? Justify your answer.

c) (4) Is L(M) deterministic context-free? Justify your answer.

7. (10 points) Give a short but careful English description of what this TM does.

8. (5 points) Where does the "k" in the Pumping Theorem for context-free languages come from? [Hint: for a regular language, k is the number of states in a DFSM that recognizes the language.]