
   

MA/CSSE 474   Exam 2  Winter 2009-10    Name_______________________       

 

Closed book and notes, except for three 8.5 x 11 sheets 

of paper (can be 2-sided). 

 

No electronic devices, especially ones with headphones. 

 

Scores: 

Problem Possible Score 

1 48  

2 15  

3 10  

4 10  

5a 10  

5b 10  

5c 10  

6 7  

Total 120  

 

 

 

1. (45 points) For each of the following statements, circle T or F to indicate whether it is True or False.  

If it is sometimes False, you should choose False.  

You do not have to give proofs or counterexamples.   

For each part, you get 1 point for circling IDK (I don't know), 3 for circling the correct answer, and 0 for circling the 

incorrect answer.  Reason:  When you don't know something, knowing that you don't know counts for something. 

 

a) T   F   IDK   (a  b) a* = (  b) a* (equal in the sense that they define the same language). 

b) T   F   IDK   L(*)  L(*) = . 

c) T   F   IDK   {anb*an : n  0}  {bna*bn : n  0} is a regular language. 

d) T   F   IDK   {w  {a, b, c}*  :  (|w| is even)  (w contains an even number of a’s} is a regular language. 

e) T   F   IDK   {w = xy, x  a*b, y  a*b, |x| = |y|} is a regular language. 

f) T   F   IDK   {(abc)nan : n  0} is a regular language. 

g) T   F   IDK   {x#y: x, y  {a, b}*, |x| + |y|  4} is a regular language. 

h) T   F   IDK   Let L = {ap : p is a prime integer}.  L* is a regular language. 

i) T   F   IDK   If L is regular and L  M is regular, then M must be regular. 

j) T   F   IDK   If L is regular and L  M is not regular, then M cannot be regular. 

k) T   F   IDK  If L and M are regular, then  N =  {x : x  L and xR  M} must be regular. 

l) T   F   IDK  The number of regular languages over the alphabet  ={a, b} is countable. 

m) T   F   IDK  Let M be a DFSM such that |KM| = 100, M = {a, b}, and L(M) is finite.   

                   We cannot tell whether w = a100b100  L(M) without running M on w. 

n) T   F  IDK  The nonregular languages are closed under complement. 

o) T   F   IDK  Let L be such that, for each w  L, there exists some DFSM that accepts w.  Then L must be regular. 

p) T   F   IDK  There is an infinite number of uncountable languages. 

 

Explanations are on the next two pages. 

 



   

a) T   F   IDK   (a  b) a* = (  b) a* (equal in the sense that they define the same language). 

The empty string is not in the first language, but it is in the second language. 

b) T   F   IDK   L(*)  L(*) = . 

The intersection contains . 

c) T   F   IDK   {anb*an : n  0}  {bna*bn : n  0} is a regular language. 

Note that: 

 {anb*an : n  0} = (aa)*  b*   {some strings that start with a and contain both a’s and b’s}. 

 {bna*bn : n  0} = a*  (bb)*  {some strings that start with b and contain both a’s and b’s}. 

L contains all strings that are in both of those languages.  So L = (aa)*  (bb)*. 

d) T   F   IDK   {w  {a, b, c}*  :  (|w| is even)  (w contains an even number of a’s} is a regular language. 

Regular.  L  = {w  {a, b, c}* : |w| is odd or w contains an even number of a’s}.  Build an FSM for {w  {a, b, c}* : |w| 

is odd} and one for {w  {a, b, c}* : w contains an even number of a’s}.  The regular languages are closed under 

union. 

e) T   F   IDK   {w = xy, x  a*b, y  a*b, |x| = |y|} is a regular language. 

Not regular.  L = {anbanb, n  0}, which we show is not regular by pumping.  Let w = akbakb.  y must occur in the first 

a region and be equal to ap for some nonzero p.  Let q = 2.  The resulting string is ak+pbakb, which is not in L. 

f) T   F   IDK   {(abc)nan : n  0} is a regular language. 

Not regular.  It is possible to do this directly using the Pumping Theorem, but it is tedious.  Instead, note that if L were 

regular, then LR would also be regular.  LR = {an(cba)n : n  0}.  We show that this is not regular by using the Pumping 

Theorem.  Let w = ak(cba)k.  y must occur in the initial a region and be equal to ap for some nonzero p.  Let q = 0 (i.e., 

pump out).  The resulting string is: ak-p(cba)k.  This string is not in L because the number of initial a’s no longer equals 

the number of occurrences of cba.   

g) T   F   IDK   {x#y: x, y  {a, b}*, |x| + |y|  4} is a regular language. 

Regular.  One way to prove this is: 

Let L1 = (a  b)* # (a  b)*.   

Let L2 = {w  {a, b, #}* : |w| < 5}.  L2 is regular because it is finite. 

Then we observe that L = L1 - L2 .  So L must be regular (the set of regular languages is closed under set 

difference). 

h) T   F   IDK   Let L = {ap : p a is prime integer}.  L* is a regular language. 

 

Yes.  L = {aa, aaa, aaaaa, …}.  So L* contains  plus every string that consists of only a’s except for the single 

string a.  L* can thus be described the regular expression   aaa*.  

 

i) T   F   IDK   If L is regular and L  M is regular, then M must be regular. 

No  Let M be any non-regular language, and L be .  Then L  M = , which is regular. 



   

 

 

j) T   F   IDK   If L is regular and L  M is not regular, then M cannot be regular. 

If L and M are both regular, so is L  M. 

k) T   F   IDK  If L and M are regular, then  N =  {x : x  L and xR  M} must be regular. 

The language is  L  MR.  The regular languages are closed under both reverse and intersection.  

l) T   F   IDK  There is a countable number of regular languages over the alphabet  ={a, b}. 

True.  The number of regular languages over  is at least countably infinite because it includes all of {a}, {aa}, 

{aaa}, {aaaa}, …  There can be no more than a countably infinite number of regular languages over  since 

every regular language can be described by some regular expression.  The number of regular expressions, given 

the alphabet , is countably infinite because it is possible to enumerate them lexicographically. 

m) T   F   IDK  Let M be a DFSM such that |KM| = 100, M = {a, b}, and L(M) is finite.   

                   We cannot tell whether w = a100b100  M without running M on w. 

False.  Since L(M) is finite, we know that M does not contain any loops that are on a path to an accepting state.  

So, since |KM| = 100, L(M) can contain no strings of length greater than 99.  So we know that w  L(M). 

n) T   F   IDK  The nonregular languages are closed under complement. 

By contradiction.  Suppose L is not-regular and L is regular.  Then L must be regular, but L = L. 

o) T   F   IDK  Let L be such that, for each w  L, there exists some DFSM that accepts w.  Then L must be regular. 

False.  Given any individual string w, there is a simple DFSM that accepts it.  But there’s only a DFSM that accepts 

L (thus making L regular) if there’s a single DFSM that accepts all of the strings in L.  If this claim were true, every 

language would be regular.  While any union of a finite languages is regular, the union of an infinite set of 

regular languages is not necessarily regular. 

p) T   F   IDK  There is an infinite number of uncountable languages. 

There are no uncountable languages, since each language's alphabet is finite, and each string is finite. 

 

 

  



   

2. (15 points) Let mid be a function on strings, defined as follows: 

For any string s in some language L over : 

 If |s|  2 then mid(s) = . 

 If |s| > 2 then let x and z be single characters in .   

Then we can rewrite s as xwz for some w  *.  mid(s) = w.  
  

For any language L over , we can define the function midL(L) as follows: 

midL(L) = {t  * : t = mid(s) for some s  L} 
 

a) (2) What is midL(a*ba*)?   

L(a*ba* a*)  ([if you "take the ends off of" ban, you get an-1] 

b) (3) Is FIN (the set of finite languages) closed under midL?      YES       NO        

The length of the longest string in midL(L) is less than the length of the longest string in L.  An infinite language must 

contain arbitrarily long strings. 
c) (5) Is INF (the set of infinite languages) closed under midL?   YES       NO        

Claim: For any N>0 midL(L) contains a string whose length is at least N.  Why?  L contains a string w whose 

length is N+2.  Then |mid(w)| = N+2-2 = N.  Thus midL(L) is infinite. 
 

d) (5) Are the regular languages closed under midL?  YES       NO 

Yes. Note that midL(L) contains all strings that can be derived by taking some string in L and erasing the first and 

last characters.  If L is regular, then it is accepted by some DFSM M = (K, , , s, A).  From M, we construct a new 

FSM M that accepts midL(L).  Initially, let M be M.  Create a new start state s and a new accepting state a.  

Make a the only accepting state of M.  For every transition ((s, c), q) in , add to M the transition ((s, ), q).  (So, 

for every first move that M can make on some input character, M can make the same move without that 

character.)  Similarly, for every transition ((q, c), a) in , where a  A, add to M the transition ((q, ), a).  (So, for 

every last move that M can make on some input character, M can make the same move without that character.)   

3. (10 points) Give a decision procedure for the following problem: 

Let  = {a, b}.  Given an FSM M, does L(M) contain at least one string that starts with ab? 

 

1. Build an FSM M* that accepts the language (ab)(a  b)*. 

2. Build an FSM M** that accepts L(M)  L(M*). 
3. If L(M**) is empty, return False, else return True. 

 

4. (10 points)  Show a context-free grammar that generates {anbm : m  n, m-n is odd}: 
S  aSb | S  Sbb | b 

 

5. (30 points)  For each part of this problem, choose one of the following parts of problem 1 (circle its letter here).   

Then circle the answer that you gave for that part.   

Finally, give a proof of the answer that you gave.  Your proof does not have to be formal, but it must be convincing. 

You will not get credit for all three parts of this problem if you do not choose at least one part for which you answered 

T and at least one part for which you answered F. 

No credit for a part of this problem if your answer for the corresponding  part in #1 is incorrect. 

I may give a few extra-credit points for any part if you choose one of the harder ones and explain it very well. 

I consider parts c, f, and g to be the hard ones that may be worth extra credit. 

 

See #1 for the answers 

 

 

 

 

 

  

  



   

6. (7 points)  The table below shows the DFSM and my solution to a problem from HW7 (calculating a regular 

expression that defines the language that is recognized by a given DFSM).  Your job is to use these results to compute 

the value of  r223.  Be sure that your answer demonstrates that you use the recursive formula.  You are not required to 

simplify 

 

r223 =  r222  r232 r332* r322  =  (10)* (10)*11(0(01)*1)* 00(10)* 

 

 

   k=0 k=1 k=2 

r11k      0(10)*1 = (01)*  

r12k 0 0 00( 10)* ( 10) = 0(10)*  

r13k 1 1 10( 10)*11=1 (01)+1 = (01)*1    

r14k   0(10)*0    Here and in later rows, I skip the ( 10)* = (10)* step 

r21k 1 1  (10)*1  

r22k      10 (10)*  

r23k  11 11 ( 10) (10)*11 = (10)*11 

r24k 0 0  0 

r31k  0 0  000(10)*1= 0( 0(10)*1)   = 0(01)*   

r32k   00 0000(10)* ( 10) = 00(10)* 

r33k    01  0100(01)*11 = 0(  0(01)*1)1 = 0(01)*1 

r34k 1 1 1 

r41k    

r42k    

r43k    

r44k   0  1   0  1   0  1 

 

 

 
 


