12.1b
(\#1) 6
12.1c
(\#2) 6
12.1d
(\#3) 6
12.1j
(\#4)
12.3
(\#5) 6+6+6
12.4
(\#6) 3 for
each part
12.5a
(\#7) 9
12.6
(\#8) 6

1. Build a PDA to accept each of the following languages L :
a. BalDelim $=\{w:$ where w is a string of delimiters: $(),,[],,\{$,$\} , that are prop-$ erly balanced $\}$.
b. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j}: 2 i=3 j+1\right\}$.
c. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(w)=2 \cdot \#_{\mathrm{b}}(w)\right\}$.
d. $\left\{\mathrm{a}^{n} \mathrm{~b}^{m}: m \leq n \leq 2 m\right\}$.
e. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: w=w^{R}\right\}$.
f. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k}: i, j, k \geq 0\right.$ and $(i \neq j$ or $\left.j \neq k)\right\}$.
g. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$: every prefix of w has at least as many a's as b's $\}$.
h. $\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mathrm{a}^{n}: n, m \geq 0\right.$ and m is even $\}$.
i. $\left\{x \mathrm{c}^{n}: x \in\{\mathrm{a}, \mathrm{b}\}^{*}, \#_{\mathrm{a}}(x)=n\right.$ or $\left.\#_{\mathrm{b}}(x)=n\right\}$.
j. $\left\{\mathrm{a}^{n} \mathrm{~b}^{m}: m \geq n, m-n\right.$ is even $\}$.
k. $\left\{\mathrm{a}^{m} \mathrm{~b}^{n} \mathrm{c}^{p} \mathrm{~d}^{q}: m, n, p, q \geq 0\right.$ and $\left.m+n=p+q\right\}$.
2. Let $L=\left\{\mathrm{ba}^{m_{1}} \mathrm{ba}^{m_{2}} \mathrm{ba}^{m_{3}} \ldots \mathrm{ba}^{m_{n}}: n \geq 2, m_{1}, m_{2}, \ldots, m_{n} \geq 0\right.$, and $m_{i} \neq m_{j}$ for some $i, j\}$.
a. Show a PDA that accepts L.
b. Show a context-free grammar that generates L.
c. Prove that L is not regular.
3. Consider the language $L=L_{1} \cap L_{2}$, where $L_{1}=\left\{w w^{\mathrm{R}}: w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ and $L_{2}=\left\{\mathrm{a}^{n} \mathrm{~b}^{*} \mathrm{a}^{n}: n \geq 0\right\}$.
a. List the first four strings in the lexicographic enumeration of L.
b. Write a context-free grammar to generate L.
c. Show a natural PDA for L. (In other words, don't just build it from the grammar using one of the two-state constructions presented in this chapter.)
d. Prove that L is not regular.
4. Build a deterministic PDA to accept each of the following languages:
a. $L \$$, where $L=\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(w)=\#_{\mathrm{b}}(w)\right\}$.
b. $L \$$ where $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{+} \mathrm{a}^{m}: n \geq 0\right.$ and $\left.\exists k \geq 0(m=2 k+n)\right\}$.
5. Complete the proof that we started in Example 12.14. Specifically, show that if M is a PDA that accepts by accepting state alone, then there exists a PDA M^{\prime} that accepts by accepting state and empty stack (our definition) where $L\left(M^{\prime}\right)=L(M)$.
12.5a Hint: In order to be deterministic, the first thing your PDA should do, before it adds any input, is to push a special "bottom of stack" marker
12.3 Clarification: It may help you to understand the language better if you replace "for some i, j " by "at least one pair i, j ".

Hints (a) Have states and transitions to handle the "don't care" sections where we aren't worried about the number of b's. (b) One nonterminal for when the $m_{i}>m_{j}$, and one for when $m_{i}<m_{j}$. (c) Pumping theorem alone probably won't do it; also use closure property.

Warning: Last time I taught the course, several students indicated that this was the most difficult problem in the assignment, and a few thought it was one of the hardest problems of the term.

