474 HW 2 problems (highlighted problems are the ones to turn in)

3.1	 Consider the following problem: Given a digital circuit C, does C output 1 on all inputs? Describe this problem as a language to be decided. 	
<mark>3.2</mark>	Using the technique we used in Example 3.8 to describe addition, describe square root as a language recognition problem.	
	Consider the problem of encrypting a password, given an encryption key. Formulate this problem as a language recognition problem.	
	4. Consider the optical character recognition (OCR) problem: Given	
3.4	black and white pixels and a set of characters, determine which character best matches the pixel array. Formulate this problem as a language recognition problem.	
<mark>3.5</mark>	5. Consider the language $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}$, discussed in Section 3.3.3.	
	We might consider the following design for a PDA to accept A ⁿ B ⁿ C ⁿ : As each a is read, push two a's onto the stack. Then pop one a for each b and one a for each c. If the input and the stack come out even, accept. Otherwise reject. Why doesn't	
this work? 6. Define a PDA-2 to be a PDA with two stacks (instead of one). Assume that the		ma that the
<mark>3.6</mark>	stacks can be manipulated independently and that the machine accepts iff it is in an accepting state and both stacks are empty when it runs out of input. De-	
	scribe the operation of a PDA-2 that accepts $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}$. (<i>Note</i> : We will see, in Section 17.5.2, that the PDA-2 is equivalent to the Turing	
	machine in the sense that any language that can be accepted by one can be ac-	
	cepted by the other.)	
4.1	1. Describe in clear English or pseudocode a decision procedure to answer the	
4.1	question, "Given a list of integers N and an individual integer n , is there any element of N that is a factor of n ?"	
<mark>4.2</mark>	2. Given a Java program p and the input 0, consider the question, "Does p ever out-	
	put anything?" a. Describe a semidecision procedure that answers this question.	
	b. Is there an obvious way to turn your answer to part a into a decision	
<mark>4.3</mark> , 4.4	procedure? 3. Recall the function $chop(L)$, defined in Example 4.10. Let $L = \{w \in \{a, b\}^*: a \in A\}$	
1.3 , 1.1	$\boldsymbol{w} = \boldsymbol{w}^R$. What is <i>chop</i> (<i>L</i>)?	
	4. Are the following sets closed under the following operations? Prove your answer. If a set is not closed under the operation, what is its closure under the operation?	Two more problems
	a. $L = \{w \in \{a, b\}^* : w \text{ ends in a}\}$ under the function <i>odds</i> , defined on strings	Two more problems,
<mark>4.4c</mark>	as follows: $odds(s)$ = the string that is formed by concatenating together all of the odd numbered characters of s . (Start numbering the characters at 1.)	not from the textbook:
	For example, $odds$ (ababbbb) = aabb.	
	b. FIN (the set of finite languages) under the function oddsL, defined on languages as follows:	#14 and #15. They are
	$oddsL(L) = \{w : \exists x \in L (w = odds(x))\}.$	described in detail on the
	c. INF (the set of infinite languages) under the function oddsL.	assignment document, so I do
	d. FIN under the function <i>maxstring</i> , defined in Example 8.22.	not repeat them here.
	e. INF under the function maxstring.	
	 2. Show a DFSM to accept each of the following languages: a. {w∈ {a,b}* : every a in w is immediately preceded and followed by b}. 	
5.2	b. $\{w \in \{a, b\}^* : w \text{ does not end in ba}\}.$	
5.2	c. $\{w \in \{0,1\}^* : w \text{ corresponds to the binary encoding, without leading 0's, of natural numbers that are evenly divisible by 4}.$	
<mark>5.2a</mark>	d. $\{w \in \{0,1\}^* : w corresponds to the binary encoding, without leading 0's, of nat-$	
	ural numbers that are powers of 4}. e. $\{w \in \{0.9\}^* : w \text{ corresponds to the decimal encoding, without leading 0's, of an}\}$	
<mark>5.2b</mark>	odd natural number}. f. $\{w \in \{0,1\}^* : w \text{ has } 001 \text{ as a substring}\}.$ g. $\{w \in \{0,1\}^* : w \text{ does not have } 001 \text{ as a substring}\}.$	
	g. $\{w \in \{0,1\}^* : w \text{ does not nave out as a substring}\}.$ h. $\{w \in \{a,b\}^* : w \text{ has bbab as a substring}\}.$	
	i. $\{w \in \{a, b\}^* : w \text{ has neither ab nor bb as a substring}\}$.	
	 j. {w ∈ {a,b}*: w has both aa and bb as a substrings}. k. {w ∈ {a,b}*: w contains at least two b's that are not immediately followed 	
	by an a}. © CourseSmart	
	l. $\{w \in \{0,1\}^* : w \text{ has no more than one pair of consecutive 0's and no more than one pair of consecutive 1's}.$	
	m. $\{w \in \{0,1\}^* : \text{ none of the prefixes of } w \text{ ends in } 0\}.$	
	n. $\{w \in \{a,b\}^* : (\#_2(w) + 2 \cdot \#_k(w)) \equiv 0\}, (\#_2(w)) \text{ is the number of a's in } w\}$	

 $\mathbf{n.} \ \{ w \in \{ \mathtt{a}, \mathtt{b} \}^* : (\#_\mathtt{a}(w) \ + \ 2 \cdot \#_\mathtt{b}(w)) \equiv_{5} 0 \}. \ (\#_\mathtt{a}(w) \text{ is the number of a's in } w).$