2/9/2012

sk in GRS

MA/CSSE 474
Theory of Computation

More Reduction Proofs

- it s USSR AT B RS * el A0 QG «
R e R A !

- Recap: Reducing Decision Problem
P, to another Decision Problem P,

« there is a Turing-computable function f that finds,
for an arbitrary instance I of P, an instance f(I) of
P,, and

¢ &« fis defined such that for every instance I of Py,
: I is a yes-instance of P, if and only if
f(I) is a yes-instance of P..

%We say that P1 is reducible to P, (written P, < P,) if
&
%

So P, < P,means "if we have a TM that decides
P,, then there is a TM that decides P,.




Reducing Language L, to L,

2* L, (over alphabet X,) is reducible to L,
% (over alphabet X,) and we write L, <L, if

TERRI 57

%

: :.' there is a Turing-computable function
& f:X,* > X" suchthat
: vx e L%, x e L, ifand only if f(x) € L,

Using reducibility

:3 If P, is reducible to P,, then
Y —If P, is decidable, so is P;.

— If P is not decidable, neither is P.

- The second part is the one that we
8§ will use most.

2/9/2012



Recap: H, = {<M> : TM M halts on &}
Theorem:H, = {<M>:TM M halts on €} is not in D.
Proof: by reduction from H:
H = {<M, w> : TM M halts on input string w}
R
(?Oracle) H, {<M>:TM M halts on €}
R is a mapping reduction from H to H,:
R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.

1.3. Run Mon w.
2. Return <M#->.

Recap: Proof, Continued

R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.

1.2. Write w on the tape and move the head to the left end.

1.3. Run Mon w.
2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:

e Cis correct: M#ignores its own input. It halts on everything or
nothing. So:
e <M, w> e H: Mhalts on w, so M# halts on everything. In
particular, it halts on €. Oracle accepts.
e <M, w> ¢ H: Mdoes not halt on w, so M# halts on nothing and
thus not on €. Oracle rejects.

2/9/2012



<M, w>

Recap: A Block Diagram of C

build M# M# Is M#in H,?

R Oracle

|_» Accept

\

> Reject

- RCan Be Implemented as a Turing Machine

M# will be:

So the procedure for constructing M# is:

1. Write:

2. For each character xin wdo:
2.1. Write x.

3. Write Lo M.

2.2. If xis not the last character in w, write R.

R must construct <M#> from <M, w>. Suppose w = aba.

>R_ -0 0

{D

aRbRalgM

2/9/2012



Conclusion
R can be implemented as a Turing machine.
Cis correct.
So, if Oracle exists:
C = Oracle(R(<M, w>)) decides H.
But no machine to decide H can exist.

So neither does Oracle.

This Result is Somewhat Surprising

If we could decide whether M halts on the specific string €, we
could solve the more general problem of deciding whether M
halts on an arbitrary input.

Clearly, the other way around is true: If we could solve H we
could decide whether M halts on any one particular string.

But we used reduction to show that H undecidable implies
H. undecidable; this is not at all obvious.

2/9/2012



2/9/2012

Different Languages We Are Dealing With

H = {<M, w> : TM M halts on input string w}
R
(?Oracle) H, {<M>:TM M halts on &}

H contains strings of the form:
(g00,a00,901,a10,«),(g00,a00,g01,a10,-),...,aaa

H, contains strings of the form:
(g00,a00,901,a10,«),(g00,a00,g01,a10,-),...

The language on which some M halts contains strings of some
arbitrary form, for example,

(letting X = {a, b}): aaaba

How Many Machines Are We Dealing With?

H = {<M, w> : TM M halts on input string w}

R I
(?Oracle) He {<M>:TM M halts on &}

Ris a reduction from H to He:
R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run Mon w.
2. Return <M#>.

e Oracle (the hypothesized machine to decide H,).

e R (the machine that builds M#. Actually exists).

e C (the composition of R with Oracle).

o M# (the machine we will pass as input to Oracle). Note that we never run it.

e M (the machine whose membershipin H we are interested in determining;
thus also an input to R).




i

A Block Diagram of C

<M, w>

/

|_» Accept
build M# M# Is Mi# in H,?

> Reject

R Oracle

w

Another Way to View the Reduction

/l'let L = {<M> | M is a TM that halts when its input is epsilon}
//'if Lis decidable, let the following function decide L:

boolean haltsOnEpsilon(TM M); // definedin magic.h

/I HaltsOn decides H using HaltsOnEpsilon
/I .: HaltsOn reduces to HaltsOnEpsilon:

bool haltsOn(TM M, string w) {
void wrapper(string iDontCare) {// a nested TM
M(w);
} {// end of nested TM
return haltsOnEpsilon(wrapper);

}

If HaltsOnEpsilon is a decision procedure, so is HaltsOn.
But of course HaltsOn is not, so neither is HaltsOnEpslipn

2/9/2012



2/9/2012

- Important Elements in using a Reduction
Proof to show a language is notin D

© « Aclear declaration of the reduction “from” and “to”
languages. The "from" language should be a known
undecidable language.

¥« Aclear description of the reduction function R.

 If R does anything nontrivial, explain how it can be
implemented as a TM.

* Note that machine diagrams are not necessary or even
sufficient in these proofs. Use them as thought devices,
where needed.

» Explain the logic that demonstrates how the “from”
language is being decided by the composition of R and
Oracle. You must do both accepting and rejecting
cases.

» Declare that the reduction proves that your “to” language
is notin D.

The Most Common Mistake:
Doing the Reduction Backwards

The right way to use reduction to show that L, is not in D:

1. Giventhat L, is not in D, L,
2. Reduce L, to L,, i.e., show how to solve L, |
(the known one) in terms of L, (the unknown one) L,

Doing it wrong by reducing L, (the unknown one) to L;:

If there exists a machine M, that solves L,, then we could build a
machine that solves L, as follows:

1. Return (M, (<M, &>)).
This proves nothing. It's an argument of the form:

If False then ...




2/9/2012

4=
-

Hany = {<M> : there exists at least one
string on which TM M halts}

Theorem: H,yy is in SD.

PRI e s

Proof: by exhibitinga TM T that semidecides it.

What about simply trying all the strings in X* one at a time
until one halts?

T A S o) 3 7
aieal? -, o r b e B & h
N4 T R e

P

Hayy isin SD
T(<Ms) =

1. Use dovetailing* to try M on all of the elements of X*:

PRI e s

e [1]

e [2] a [1]

e [38] a [2] b [1]

e [4] a [3] b [2] aa [1]

e [5] a [4] b _[3] aa [2] ab [1]

2. If any instance of M halts, halt and accept.

N - AR £33, 2
aieal? -, 7 e Ul B P- & h
O F o F B PSR

T will accept iff M halts on at least one string. So T
semidecides Hayy

* http://en.wikipedia.org/wiki/Dovetailing (computer science)




Hayyy isnotin D

The Steps in a Reduction Proof

1. & Choose an undecidable language to reduce from.

2. & Define the reduction R.

3. Show that C (the composition of R with Oracle) is
correct.

& indicates where we make choices.

2/9/2012

10



Undecidable Problems
(Languages That Aren’t In D)

The Problem View The Language View
Does TM M halt on w? H={<M,w>:

M halts on w}
Does TM M not halt on w? —H ={<M,w>:

M does not halt on w}

Does TM M halt on the empty tape?

H,= {<M>: M haltson €}

Is there any string on which TM M halts?

H,\y = {<M> : there exists at least
one string on which TM M halts }

Does TM M accept all strings?

AyL= {<M>:L(M)=3x*)

Do TMs M, and M, accept the same languages?

EqTMs =
(<M, M,>: L(M,) = L(M,)}

Is the language that TM M accepts regular?

TMreg =
{<M>:L(M) is regular}

Tomorrow: We will prove some of these (most are also done in the book)

2/9/2012

11



