
2/9/2012

1

MA/CSSE 474
Theory of Computation

More Reduction Proofs

Recap: Reducing Decision Problem
P1 to another Decision Problem P2

We say that P1 is reducible to P2 (written P1 ≤ P2) if

• there is a Turing-computable function f that finds,
for an arbitrary instance I of P1, an instance f(I) of

P2, and

• f is defined such that for every instance I of P1,

I is a yes-instance of P1 if and only if

f(I) is a yes-instance of P2.

So P1 ≤ P2 means "if we have a TM that decides

P2, then there is a TM that decides P1.

2/9/2012

2

Reducing Language L1 to L2

• L1 (over alphabet Σ1) is reducible to L2

(over alphabet Σ2) and we write L1 ≤ L2 if

there is a Turing-computable function
f : Σ1* → Σ2* such that

∀x ∈ Σ1*, x ∈ L1 if and only if f(x) ∈ L2

Using reducibility

• If P1 is reducible to P2, then

– If P2 is decidable, so is P1.

– If P1 is not decidable, neither is P2.

• The second part is the one that we

will use most.

2/9/2012

3

Theorem: Hε = {<M> : TM M halts on ε} is not in D.

Proof: by reduction from H:

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) Hε {<M> : TM M halts on ε}

R is a mapping reduction from H to Hε:
R(<M, w>) =

1. Construct <M#>, where M#(x) operates as follows:
1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.
1.3. Run M on w.

2. Return <M#>.

Recap: Hεεεε
= {<M> : TM M halts on εεεε}

R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape and move the head to the left end.
1.3. Run M on w.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:

● C is correct: M# ignores its own input. It halts on everything or
nothing. So:
● <M, w> ∈ H: M halts on w, so M# halts on everything. In

particular, it halts on ε. Oracle accepts.
● <M, w> ∉ H: M does not halt on w, so M# halts on nothing and

thus not on ε. Oracle rejects.

Recap: Proof, Continued

2/9/2012

4

Recap: A Block Diagram of C

R must construct <M#> from <M, w>. Suppose w = aba.

M# will be:

So the procedure for constructing M# is:

1. Write:

2. For each character x in w do:
2.1. Write x.

2.2. If x is not the last character in w, write R.
3. Write L� M.

R Can Be Implemented as a Turing Machine

2/9/2012

5

R can be implemented as a Turing machine.

C is correct.

So, if Oracle exists:

C = Oracle(R(<M, w>)) decides H.

But no machine to decide H can exist.

So neither does Oracle.

Conclusion

If we could decide whether M halts on the specific string ε, we
could solve the more general problem of deciding whether M
halts on an arbitrary input.

Clearly, the other way around is true: If we could solve H we
could decide whether M halts on any one particular string.

But we used reduction to show that H undecidable implies
Hε undecidable; this is not at all obvious.

This Result is Somewhat Surprising

2/9/2012

6

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) Hε {<M> : TM M halts on ε}

H contains strings of the form:
(q00,a00,q01,a10,←),(q00,a00,q01,a10,→),…,aaa

Hε contains strings of the form:
(q00,a00,q01,a10,←),(q00,a00,q01,a10,→),…

The language on which some M halts contains strings of some
arbitrary form, for example,

(letting Σ = {a, b}): aaaba

Different Languages We Are Dealing With

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) Hε {<M> : TM M halts on ε}

R is a reduction from H to Hε:
R(<M, w>) =
1. Construct <M#>, where M#(x) operates as follows:

1.1. Erase the tape.
1.2. Write w on the tape.
1.3. Run M on w.

2. Return <M#>.

● Oracle (the hypothesized machine to decide Hε).
● R (the machine that builds M#. Actually exists).
● C (the composition of R with Oracle).
● M# (the machine we will pass as input to Oracle). Note that we never run it.
● M (the machine whose membership in H we are interested in determining;

thus also an input to R).

How Many Machines Are We Dealing With?

2/9/2012

7

A Block Diagram of C

// let L = {<M> | M is a TM that halts when its input is epsilon}
// if L is decidable, let the following function decide L:

boolean haltsOnEpsilon(TM M); // defined in magic.h

// HaltsOn decides H using HaltsOnEpsilon
// .: HaltsOn reduces to HaltsOnEpsilon:

bool haltsOn(TM M, string w) {
void wrapper(string iDontCare) {// a nested TM

M(w);
} {// end of nested TM
return haltsOnEpsilon(wrapper);

}

Another Way to View the Reduction

If HaltsOnEpsilon is a decision procedure, so is HaltsOn.

But of course HaltsOn is not, so neither is HaltsOnEpslipn

2/9/2012

8

• A clear declaration of the reduction “from” and “to”
languages. The "from" language should be a known
undecidable language.

• A clear description of the reduction function R.

• If R does anything nontrivial, explain how it can be
implemented as a TM.

• Note that machine diagrams are not necessary or even
sufficient in these proofs. Use them as thought devices,
where needed.

• Explain the logic that demonstrates how the “from”
language is being decided by the composition of R and
Oracle. You must do both accepting and rejecting
cases.

• Declare that the reduction proves that your “to” language
is not in D.

Important Elements in using a Reduction
Proof to show a language is not in D

The right way to use reduction to show that L2 is not in D:

1. Given that L1 is not in D, L1

2. Reduce L1 to L2, i.e., show how to solve L1

(the known one) in terms of L2 (the unknown one) L2

Doing it wrong by reducing L2 (the unknown one) to L1:

If there exists a machine M1 that solves L1, then we could build a
machine that solves L2 as follows:

1. Return (M1(<M, ε>)).

This proves nothing. It’s an argument of the form:

If False then …

The Most Common Mistake:
Doing the Reduction Backwards

2/9/2012

9

Theorem: HANY is in SD.

Proof: by exhibiting a TM T that semidecides it.

What about simply trying all the strings in Σ* one at a time

until one halts?

HANY = {<M> : there exists at least one
string on which TM M halts}

T(<M>) =

1. Use dovetailing* to try M on all of the elements of Σ*:

ε [1]
ε [2] a [1]
ε [3] a [2] b [1]
ε [4] a [3] b [2] aa [1]
ε [5] a [4] b [3] aa [2] ab [1]

2. If any instance of M halts, halt and accept.

T will accept iff M halts on at least one string. So T
semidecides HANY.

HANY is in SD

* http://en.wikipedia.org/wiki/Dovetailing_(computer_science)

2/9/2012

10

HANY is not in D

1. � Choose an undecidable language to reduce from.

2. � Define the reduction R.

3. Show that C (the composition of R with Oracle) is

correct.

� indicates where we make choices.

The Steps in a Reduction Proof

2/9/2012

11

Undecidable Problems
(Languages That Aren’t In D)

The Problem View The Language View

Does TM M halt on w? H = {<M, w> :

M halts on w}

Does TM M not halt on w? ¬H = {<M, w> :

M does not halt on w}

Does TM M halt on the empty tape? H
ε

= {<M> : M halts on ε}

Is there any string on which TM M halts? HANY = {<M> : there exists at least

one string on which TM M halts }

Does TM M accept all strings? AALL = {<M> : L(M) = Σ*}

Do TMs Ma and Mb accept the same languages? EqTMs =

{<Ma, Mb> : L(Ma) = L(Mb)}

Is the language that TM M accepts regular? TMreg =

{<M>:L(M) is regular}

Tomorrow: We will prove some of these (most are also done in the book)

