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MA/CSSE 474
Theory of Computation

Regular Expressions

Questions?

• Homework

• Tomorrow's Exam material 
(no NFA->DFA proof on this exam)

• Reading

• Anything else
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The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence 
classes of ≈L is finite.  

Proof: Show the two directions of the implication:

L regular →→→→ the number of equivalence classes of ≈≈≈≈L is 

finite: If L is regular, then there exists some FSM M that 
accepts L.  M has some finite number of states m.  The 
cardinality of ≈L ≤ m.  So the cardinality of ≈L is finite.

The number of equivalence classes of ≈≈≈≈L is finite →→→→ L 

regular: If the cardinality of ≈L is finite, then the construction 
that was described in the proof of the previous theorem will 
build an FSM that accepts L.  So L must be regular.  

Q1

Summary

● Given any regular language L, there exists a 

minimal DFSM M that accepts L.

● M is unique up to the naming of its states.

● Given any DFSM M, there exists an algorithm    

minDFSM that constructs a minimal DFSM 

that also accepts L(M).
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Canonical Forms

A canonical form for some set of objects C assigns 

exactly one representation to each class of “equivalent” 

objects in C.  

Further, each such representation is distinct, so two 

objects in C share the same representation iff they are 

“equivalent” in the sense for which we define the form.  

A Canonical Form for FSMs
buildFSMcanonicalform(M: FSM) = 

1. M′ = ndfsmtodfsm(M).

2. M* = minDFSM(M′).
3.  Create a unique assignment of names to the 

states of M*.

4.  Return M*.

Given two FSMs M1 and M2:

buildFSMcanonicalform(M1) 

= 

buildFSMcanonicalform(M2)

iff L(M1) = L(M2). 
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Regular Languages

Regular 

Language

Regular Expression

Finite State  

Machine

Describes

Accepts

Regular Expressions

The regular expressions over an alphabet Σ are the 

strings that can be obtained as follows:

1. ∅ is a regular expression.

2. ε is a regular expression.

3. Every element of Σ is a regular expression.

4. If α , β are regular expressions, then so is αβ.

5. If α , β are regular expressions, then so is α∪β.

6. If α is a regular expression, then so is α*.

7. α is a regular expression, then so is α+.

8. If α is a regular expression, then so is (α).
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Regular Expression Examples

If Σ = {a, b}, the following are regular expressions:

∅
ε
a

(a ∪ b)*

abba ∪ ε

Regular Expressions Define Languages

Define L, a semantic interpretation function for regular 

expressions (Let α and β be arbitrary regular 

expressions over alphabet Σ.

1. L(∅) = ∅.

2. L(ε) = {ε}.

3. If c ∈ Σ , L(c) = {c}.

4. L(αβ) = L(α) L(β). 

5. L(α ∪ β) = L(α) ∪ L(β). 

6. L(α*) = (L(α))*.  

7. L(α+) = L(αα*) = L(α) (L(α))*.  If L(α) is equal to ∅, then 

L(α+) is also equal to ∅.  Otherwise L(α+) is the 

language that is formed by concatenating together one 

or more strings drawn from L(α).

8. L((α)) = L(α). 
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The Role of the Rules

• Rules 1, 3, 4, 5, and 6 give the language its power to 

define sets.  

• Rule 8 has as its only role grouping other operators. 

• Rules 2 and 7 appear to add functionality to the 

regular expression language, but they don’t.

2. ε is a regular expression.

7. α is a regular expression, then so is α+.

Q2

Operator Precedence in Regular Expressions

Regular Arithmetic
Expressions Expressions

Highest Kleene star exponentiation

concatenation multiplication

Lowest union addition

a b* ∪ c d* x y2 + i j2
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Analyzing a Regular Expression

L((a ∪ b)*b) =  L((a ∪ b)*)  L(b)

= (L((a ∪ b)))* L(b)

= (L(a) ∪ L(b))* L(b)

= ({a} ∪ {b})* {b}

= {a, b}* {b}.

Examples

L(  a*b*  ) =

L(  (a ∪ b)*  ) =

L(  (a ∪ b)*a*b*  ) =

L(  (a ∪ b)*abba(a ∪ b)*  ) =
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Going the Other Way

L = {w ∈ {a, b}*: |w| is even}

L = {w ∈ {0, 1}*: w is a binary representation of a 

multiple of 4}

L = {w ∈ {a, b}*: w contains an odd number of a’s}

Q3-5

Hidden: Going the Other Way

L = {w ∈ {a, b}*: |w| is even}

(a ∪ b) (a ∪ b))*

(aa ∪ ab ∪ ba ∪ bb)*

L = {w ∈ {0, 1}*: w is a binary representation of a 

multiple of 4}

0 ∪ 1(0 ∪ 1)*00

L = {w ∈ {a, b}*: w contains an odd number of a’s}

b* (ab*ab*)* a b*

b* a b* (ab*ab*)*
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The Details Matter

a* ∪ b* ≠ (a ∪ b)*

(ab)* ≠ a*b*

More Regular Expression Examples

L (  (aa*) ∪ ε ) =

L (  (a ∪ ε)*  ) =

L = {w ∈ {a, b}*: there is no more than one b in w}

L = {w ∈ {a, b}* : no two consecutive letters in w are the

same} 

Q6-7
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The Details Matter

L1 = {w ∈ {a, b}* : every a is immediately followed a b}

A regular expression for L1:

A FSM for L1:

L2 = {w ∈ {a, b}* : every a has a matching b somewhere}

A regular expression for L2:

A FSM for L2:

Kleene’s Theorem

Finite state machines and regular expressions define 

the same class of languages.  

To prove this, we must show:

Theorem: Any language that can be defined by a

regular expression can be accepted by some FSM

and so is regular.

Theorem: Every regular language (i.e., every language

that can be accepted by some DFSM) can be

defined with a regular expression.
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For Every Regular Expression 
There is a Corresponding FSM

We’ll show this by construction.  An FSM for:

∅:

A single element of Σ:

ε (∅*):

Union

If α is the regular expression β ∪ γ and if both L(β) and 

L(γ) are regular:



6/20/2012

12

Concatenation

If α is the regular expression βγ and if both L(β) and L(γ) 

are regular:

Kleene Star

If α is the regular expression β* and if L(β) is regular:
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An Example

(b ∪ ab)*

An FSM for b An FSM for a An FSM for b

An FSM for ab:

An Example

(b ∪ ab)*

An FSM for (b ∪ ab):
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An Example

(b ∪ ab)*

An FSM for (b ∪ ab)*:


