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MA/CSSE 474

Theory of Computation

Course Intro

Introductions

• Students

– Normally I would have everyone introduce 

themselves in class, but this time the class is 

so big that I am having you introduce yourself 

on an ANGEL discussion forum

– Introduce yourself, respond to someone else's 

intro.  Before tomorrow's class.  Mine is already 

there.

• Graders: Kurtis Zimmerman, Kenny Gao, 
Eric Reed

• Instructor:  Claude Anderson: F-210, x8331
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Instructor Professional Background

• Formal Education:
– BS Caltech, Mathematics 1975
– Ph.D. Illinois, Mathematics 1981
– MS Indiana, Computer Science 1987

• Teaching:
– TA at Illinois, Indiana 1975-1981, 1986-87
– Wilkes College (now Wilkes University) 1981-88
– RHIT 1988 – 2022?

• Major Consulting Gigs:
– Pennsylvania Funeral Directors Assn 1983-88
– Navistar International 1994-95
– Beckman Coulter 1996-98
– ANGEL Learning 2005-2008 

• Theory of Computation history

Textbook

• Fairly new

• Thorough

• Literate

• Large

• Theory and 
Applications

• We’ll focus more on 
theory; applications 
there for you to see
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Online Materials Quick Tour
– On the Web – general stuff 

• Suggestion: bookmark schedule page

– On ANGEL – personal stuff 

• surveys, solutions, discussions, grades

• Suggestion: subscribe to discussion forums.

– Many things are under construction and 

subject to change, especially the course 

schedule.

– HW due Friday day usually posted by 

Tuesday 

– HW due Tuesday usually posted by Friday

– Preliminary versions already there.

Grateful Acknowledgement

• Many of the PowerPoint slides that I will 
use were produced by Elaine Rich, in 
conjunction with her textbook.

• I will modify some of them.

• I will create some new ones.
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Why Study the Theory of 
Computation?

• Why not just write programs?

• Implementations come and go.

IBM 7090 Programming in the 1950’s 

ENTRY SXA 4,RETURN

LDQ X

FMP A

FAD B

XCA

FMP X

FAD C

STO RESULT

RETURN TRA 0

A BSS 1

B BSS 1

C BSS 1

X BSS 1

TEMP BSS 1

STORE BSS 1

END
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Programming in the 1970’s 

(IBM 360)
//MYJOB JOB (COMPRESS),

'VOLKER BANDKE',CLASS=P,COND=(0,NE)

//BACKUP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DISP=SHR,DSN=MY.IMPORTNT.PDS

//SYSUT2 DD DISP=(,CATLG),

DSN=MY.IMPORTNT.PDS.BACKUP,

// UNIT=3350,VOL=SER=DISK01,

// DCB=MY.IMPORTNT.PDS,

SPACE=(CYL,(10,10,20))

//COMPRESS EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=*

//MYPDS DD DISP=OLD,DSN=*.BACKUP.SYSUT1

//SYSIN DD *

COPY INDD=MYPDS,OUTDD=MYPDS

//DELETE2 EXEC PGM=IEFBR14

//BACKPDS DD DISP=(OLD,DELETE,DELETE),

DSN=MY.IMPORTNT.PDS.BACKUP

Programming in the New Millennium

public static TreeMap<String, Integer> create() throws IOException { 

Integer freq; 

String word; 

TreeMap< String, Integer> result = new TreeMap<String, Integer>(); 

JFileChooser c = new JFileChooser(); 

int retval = c.showOpenDialog(null); 

if (retval == JFileChooser.APPROVE_ OPTION) { 

Scanner s = new Scanner(c.getSelectedFile()); 

while(s.hasNext()) { 

word = s.next().toLowerCase(); 

freq = result.get(word); 

result.put(word, (freq == null ? 1 : freq + 1)); 

} 

} 

return result; 

} 

Find the frequency of each word in a text file chosen by the user.
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Timeless Abstractions

• Mathematical properties of problems and 
algorithms.

• Do not depend on technology or 
programming style.

• The basic principles remain the same:

• What can be computed, and what cannot?

• What are reasonable mathematical 
models of computation?

Q1

More Detailed Questions

• Does a computational solution to the problem exist?
– Without regard to limitations of processor speed or 

memory size.

– If not, is there a restricted but useful variation of the 
problem for which a solution does exist? 

• If a solution exists, can it be implemented using some 
fixed amount of memory? 

• If a solution exists, how efficient is it? 
– More specifically, how do its time and space requirements 

grow as the size of the problem grows?

• Are there groups of problems that are equivalent in 
the sense that if there is an efficient solution to one 
member of the group there is an efficient solution to all 
the others?
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Applications of the Theory

• Finite State Machines (FSMs) for parity checkers, 
vending machines, communication protocols, and 
building security devices.

• Interactive games as nondeterministic FSMs.

• Programming languages, compilers, and context-free 
grammars.

• Natural languages are mostly context-free.  Speech 
understanding systems use probabilistic FSMs.

• Computational biology: DNA and proteins are strings. 

• The undecidability of a simple security model.

• Artificial intelligence: the undecidability of first-order 
logic.

What we will focus on

• Definitions

• Theorems

• Examples

• Proofs
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Languages and Strings

(1) Lexical analysis: Scan the program and break it up into variable 
names, numbers, operators, punctiuation, etc.
(2) Parsing: Create a tree that corresponds to the sequence of 
operations that should be executed, e.g.,

/

+               10

2         5
(3) Optimization: Realize that we can skip the first assignment 
since the value is never used and that we can pre-compute the 
arithmetic expression, since it contains only constants.
(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) useful it does.

Some Language-related Problems
int alpha, beta;
alpha = 3;
beta = (2 + 5) / 10;
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A Framework for Analyzing Problems

We need a single framework in which we can 

analyze a very diverse set of problems.

The framework we will use is 

Language Recognition

A (formal) language is a (possibly infinite) set of 

finite-length strings over a finite alphabet.

Q2

Strings

A string is a finite sequence, possibly empty, 

of symbols from some finite alphabet Σ. 

• ε is the empty string (some books/papers use λ instead)

• Σ* is the set of all possible strings over an alphabet Σ

Alphabet name Alphabet symbols Example strings

The English 
alphabet

{a, b, c, …, z} ε, aabbcg, aaaaa

The binary 
alphabet

{0, 1} ε, 0, 001100

A star alphabet {� , � , � , �, �, �} ε, ��, ������

A music 
alphabet {w, h, q, e, x, r, �} ε, w l h h l hqq l

Q3
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Functions on Strings

Counting: |s| is the number of symbols in s. 

|ε| = 0
|1001101| = 7

#c(s) is the number of times that c occurs in s.

#a(abbaaa) = 4.

More Functions on Strings

Concatenation: st is the concatenation of s and t.  

If x = good and y = bye, then xy = goodbye. 

Note that |xy| = |x| + |y|.

ε is the identity for concatenation of strings.  So:

∀x (x ε = ε x = x).

Concatenation is associative.  So:

∀s, t, w ((st)w = s(tw)).
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More Functions on Strings

Replication: For each string w and each 

natural number i, the string wi is:

w0 = ε

wi+1 = wi w

Examples:

a3 = aaa

(bye)2 = byebye

a0b3 = bbb

More Functions on Strings

Reverse: For each string w, wR is defined as:

if |w| = 0 then wR = w = ε

if |w| ≥ 1 then:

∃a ∈ Σ (∃u ∈ Σ* (w = ua)). 

So define wR = a u R.
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Concatenation and Reverse of Strings 

Theorem: If w and x are strings, then (w x)R = xR wR.  

Example:

(nametag)R = (tag)R (name)R = gateman

Q4

Concatenation and Reverse of Strings 
Proof: By induction on |x|:

|x| = 0:  Then x = ε, and (wx)R = (w ε)R = (w)R = ε wR = εR wR = xR wR. 

∀n ≥ 0 (((|x| = n) → ((w x)R = xR wR))  →
((|x| = n + 1) → ((w x)R = xR wR))):

Consider any string x, where |x| = n + 1. Then x = u a for some 
character a and |u| = n.  So:

(w x)R = (w (u a))R rewrite x as ua

= ((w u) a)R associativity of concatenation
= a (w u)R definition of reversal
= a (uR wR) induction hypothesis
= (a uR) wR associativity of concatenation
= (ua)R wR definition of reversal
= xR wR rewrite ua as x

This slide is hidden.  Do it on the board.
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Relations on Strings: Substring

aaa is a substring of        aaabbbaaa

aaaaaa is not a substring of aaabbbaaa

aaa is a proper substring of aaabbbaaa

Every string is a substring of itself.  

ε is a substring of every string.  

Relations on Strings: Prefix

s is a prefix of t iff:     ∃x ∈ Σ* (t = sx).

s is a proper prefix of t iff:    s is a prefix of t and s ≠ t.

Examples:

The prefixes of abba are: ε, a, ab, abb, abba.

The proper prefixes of abba are: ε, a, ab, abb.

Every string is a prefix of itself.

ε is a prefix of every string. 
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Relations on Strings: Suffix

s is a suffix of t iff:     ∃x ∈ Σ* (t = xs).

s is a proper suffix of t iff:    s is a suffix of t and s ≠ t.

Examples:

The suffixes of abba are: ε, a, ba, bba, abba.

The proper suffixes of abba are: ε, a, ba, bba.

Every string is a suffix of itself.  

ε is a suffix of every string.

Defining a Language

A language is a (finite or infinite) set of strings over a finite 

alphabet Σ.

Examples: Let Σ = {a, b}

Some languages over Σ: 

∅, 

{ε}, 
{a, b}, 

{ε, a, aa, aaa, aaaa, aaaaa}

The language Σ* contains an infinite number of strings, 
including: ε, a, b, ab, ababaa.
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Example Language Definitions

L = {x ∈ {a, b}* : all a’s precede all b’s}

ε, a, aa, aabbb, and bb are in L.  

aba, ba, and abc are not in L.  

Example Language Definitions

L = {x : ∃y ∈ {a, b}* : x = ya}

Simple English description:



11/28/2011

16

The Perils of Using English

L = {x#y: x, y ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}* and, when x 

and y are viewed as the decimal representations of 

natural numbers, square(x) = y}.

Examples:

3#9, 12#144

3#8, 12, 12#12#12

#

More Example Language Definitions

L = { } = ∅

L =  {ε}
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English

L = {w: w is a sentence in English}.

Examples:

Kerry hit the ball.

Colorless green ideas sleep furiously.

The window needs fixed.

Ball the Stacy hit blue.

A Halting Problem Language

L = {w: w is a C program that halts on all inputs}. 

• Well specified.

• Can we decide what strings it contains?
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Languages and Prefixes

What are the following languages?

L = {w ∈ {a, b}*: no prefix of w contains b}

L = {w ∈ {a, b}*: no prefix of w starts with a}

L = {w ∈ {a, b}*: every prefix of w starts with a}

Q5

Using Replication in a Language 
Definition

L = {an : n ≥ 0}

Q6-7


