
11/28/2011

1

MA/CSSE 474

Theory of Computation

Course Intro

Introductions

• Students

– Normally I would have everyone introduce

themselves in class, but this time the class is

so big that I am having you introduce yourself

on an ANGEL discussion forum

– Introduce yourself, respond to someone else's

intro. Before tomorrow's class. Mine is already

there.

• Graders: Kurtis Zimmerman, Kenny Gao,
Eric Reed

• Instructor: Claude Anderson: F-210, x8331

11/28/2011

2

Instructor Professional Background

• Formal Education:
– BS Caltech, Mathematics 1975
– Ph.D. Illinois, Mathematics 1981
– MS Indiana, Computer Science 1987

• Teaching:
– TA at Illinois, Indiana 1975-1981, 1986-87
– Wilkes College (now Wilkes University) 1981-88
– RHIT 1988 – 2022?

• Major Consulting Gigs:
– Pennsylvania Funeral Directors Assn 1983-88
– Navistar International 1994-95
– Beckman Coulter 1996-98
– ANGEL Learning 2005-2008

• Theory of Computation history

Textbook

• Fairly new

• Thorough

• Literate

• Large

• Theory and
Applications

• We’ll focus more on
theory; applications
there for you to see

11/28/2011

3

Online Materials Quick Tour
– On the Web – general stuff

• Suggestion: bookmark schedule page

– On ANGEL – personal stuff

• surveys, solutions, discussions, grades

• Suggestion: subscribe to discussion forums.

– Many things are under construction and

subject to change, especially the course

schedule.

– HW due Friday day usually posted by

Tuesday

– HW due Tuesday usually posted by Friday

– Preliminary versions already there.

Grateful Acknowledgement

• Many of the PowerPoint slides that I will
use were produced by Elaine Rich, in
conjunction with her textbook.

• I will modify some of them.

• I will create some new ones.

11/28/2011

4

Why Study the Theory of
Computation?

• Why not just write programs?

• Implementations come and go.

IBM 7090 Programming in the 1950’s

ENTRY SXA 4,RETURN

LDQ X

FMP A

FAD B

XCA

FMP X

FAD C

STO RESULT

RETURN TRA 0

A BSS 1

B BSS 1

C BSS 1

X BSS 1

TEMP BSS 1

STORE BSS 1

END

11/28/2011

5

Programming in the 1970’s

(IBM 360)
//MYJOB JOB (COMPRESS),

'VOLKER BANDKE',CLASS=P,COND=(0,NE)

//BACKUP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DISP=SHR,DSN=MY.IMPORTNT.PDS

//SYSUT2 DD DISP=(,CATLG),

DSN=MY.IMPORTNT.PDS.BACKUP,

// UNIT=3350,VOL=SER=DISK01,

// DCB=MY.IMPORTNT.PDS,

SPACE=(CYL,(10,10,20))

//COMPRESS EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=*

//MYPDS DD DISP=OLD,DSN=*.BACKUP.SYSUT1

//SYSIN DD *

COPY INDD=MYPDS,OUTDD=MYPDS

//DELETE2 EXEC PGM=IEFBR14

//BACKPDS DD DISP=(OLD,DELETE,DELETE),

DSN=MY.IMPORTNT.PDS.BACKUP

Programming in the New Millennium

public static TreeMap<String, Integer> create() throws IOException {

Integer freq;

String word;

TreeMap< String, Integer> result = new TreeMap<String, Integer>();

JFileChooser c = new JFileChooser();

int retval = c.showOpenDialog(null);

if (retval == JFileChooser.APPROVE_ OPTION) {

Scanner s = new Scanner(c.getSelectedFile());

while(s.hasNext()) {

word = s.next().toLowerCase();

freq = result.get(word);

result.put(word, (freq == null ? 1 : freq + 1));

}

}

return result;

}

Find the frequency of each word in a text file chosen by the user.

11/28/2011

6

Timeless Abstractions

• Mathematical properties of problems and
algorithms.

• Do not depend on technology or
programming style.

• The basic principles remain the same:

• What can be computed, and what cannot?

• What are reasonable mathematical
models of computation?

Q1

More Detailed Questions

• Does a computational solution to the problem exist?
– Without regard to limitations of processor speed or

memory size.

– If not, is there a restricted but useful variation of the
problem for which a solution does exist?

• If a solution exists, can it be implemented using some
fixed amount of memory?

• If a solution exists, how efficient is it?
– More specifically, how do its time and space requirements

grow as the size of the problem grows?

• Are there groups of problems that are equivalent in
the sense that if there is an efficient solution to one
member of the group there is an efficient solution to all
the others?

11/28/2011

7

Applications of the Theory

• Finite State Machines (FSMs) for parity checkers,
vending machines, communication protocols, and
building security devices.

• Interactive games as nondeterministic FSMs.

• Programming languages, compilers, and context-free
grammars.

• Natural languages are mostly context-free. Speech
understanding systems use probabilistic FSMs.

• Computational biology: DNA and proteins are strings.

• The undecidability of a simple security model.

• Artificial intelligence: the undecidability of first-order
logic.

What we will focus on

• Definitions

• Theorems

• Examples

• Proofs

11/28/2011

8

Languages and Strings

(1) Lexical analysis: Scan the program and break it up into variable
names, numbers, operators, punctiuation, etc.
(2) Parsing: Create a tree that corresponds to the sequence of
operations that should be executed, e.g.,

/

+ 10

2 5
(3) Optimization: Realize that we can skip the first assignment
since the value is never used and that we can pre-compute the
arithmetic expression, since it contains only constants.
(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) useful it does.

Some Language-related Problems
int alpha, beta;
alpha = 3;
beta = (2 + 5) / 10;

11/28/2011

9

A Framework for Analyzing Problems

We need a single framework in which we can

analyze a very diverse set of problems.

The framework we will use is

Language Recognition

A (formal) language is a (possibly infinite) set of

finite-length strings over a finite alphabet.

Q2

Strings

A string is a finite sequence, possibly empty,

of symbols from some finite alphabet Σ.

• ε is the empty string (some books/papers use λ instead)

• Σ* is the set of all possible strings over an alphabet Σ

Alphabet name Alphabet symbols Example strings

The English
alphabet

{a, b, c, …, z} ε, aabbcg, aaaaa

The binary
alphabet

{0, 1} ε, 0, 001100

A star alphabet {� , � , � , �, �, �} ε, ��, ������

A music
alphabet {w, h, q, e, x, r, �} ε, w l h h l hqq l

Q3

11/28/2011

10

Functions on Strings

Counting: |s| is the number of symbols in s.

|ε| = 0
|1001101| = 7

#c(s) is the number of times that c occurs in s.

#a(abbaaa) = 4.

More Functions on Strings

Concatenation: st is the concatenation of s and t.

If x = good and y = bye, then xy = goodbye.

Note that |xy| = |x| + |y|.

ε is the identity for concatenation of strings. So:

∀x (x ε = ε x = x).

Concatenation is associative. So:

∀s, t, w ((st)w = s(tw)).

11/28/2011

11

More Functions on Strings

Replication: For each string w and each

natural number i, the string wi is:

w0 = ε

wi+1 = wi w

Examples:

a3 = aaa

(bye)2 = byebye

a0b3 = bbb

More Functions on Strings

Reverse: For each string w, wR is defined as:

if |w| = 0 then wR = w = ε

if |w| ≥ 1 then:

∃a ∈ Σ (∃u ∈ Σ* (w = ua)).

So define wR = a u R.

11/28/2011

12

Concatenation and Reverse of Strings

Theorem: If w and x are strings, then (w x)R = xR wR.

Example:

(nametag)R = (tag)R (name)R = gateman

Q4

Concatenation and Reverse of Strings
Proof: By induction on |x|:

|x| = 0: Then x = ε, and (wx)R = (w ε)R = (w)R = ε wR = εR wR = xR wR.

∀n ≥ 0 (((|x| = n) → ((w x)R = xR wR)) →
((|x| = n + 1) → ((w x)R = xR wR))):

Consider any string x, where |x| = n + 1. Then x = u a for some
character a and |u| = n. So:

(w x)R = (w (u a))R rewrite x as ua

= ((w u) a)R associativity of concatenation
= a (w u)R definition of reversal
= a (uR wR) induction hypothesis
= (a uR) wR associativity of concatenation
= (ua)R wR definition of reversal
= xR wR rewrite ua as x

This slide is hidden. Do it on the board.

11/28/2011

13

Relations on Strings: Substring

aaa is a substring of aaabbbaaa

aaaaaa is not a substring of aaabbbaaa

aaa is a proper substring of aaabbbaaa

Every string is a substring of itself.

ε is a substring of every string.

Relations on Strings: Prefix

s is a prefix of t iff: ∃x ∈ Σ* (t = sx).

s is a proper prefix of t iff: s is a prefix of t and s ≠ t.

Examples:

The prefixes of abba are: ε, a, ab, abb, abba.

The proper prefixes of abba are: ε, a, ab, abb.

Every string is a prefix of itself.

ε is a prefix of every string.

11/28/2011

14

Relations on Strings: Suffix

s is a suffix of t iff: ∃x ∈ Σ* (t = xs).

s is a proper suffix of t iff: s is a suffix of t and s ≠ t.

Examples:

The suffixes of abba are: ε, a, ba, bba, abba.

The proper suffixes of abba are: ε, a, ba, bba.

Every string is a suffix of itself.

ε is a suffix of every string.

Defining a Language

A language is a (finite or infinite) set of strings over a finite

alphabet Σ.

Examples: Let Σ = {a, b}

Some languages over Σ:

∅,

{ε},
{a, b},

{ε, a, aa, aaa, aaaa, aaaaa}

The language Σ* contains an infinite number of strings,
including: ε, a, b, ab, ababaa.

11/28/2011

15

Example Language Definitions

L = {x ∈ {a, b}* : all a’s precede all b’s}

ε, a, aa, aabbb, and bb are in L.

aba, ba, and abc are not in L.

Example Language Definitions

L = {x : ∃y ∈ {a, b}* : x = ya}

Simple English description:

11/28/2011

16

The Perils of Using English

L = {x#y: x, y ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}* and, when x

and y are viewed as the decimal representations of

natural numbers, square(x) = y}.

Examples:

3#9, 12#144

3#8, 12, 12#12#12

#

More Example Language Definitions

L = { } = ∅

L = {ε}

11/28/2011

17

English

L = {w: w is a sentence in English}.

Examples:

Kerry hit the ball.

Colorless green ideas sleep furiously.

The window needs fixed.

Ball the Stacy hit blue.

A Halting Problem Language

L = {w: w is a C program that halts on all inputs}.

• Well specified.

• Can we decide what strings it contains?

11/28/2011

18

Languages and Prefixes

What are the following languages?

L = {w ∈ {a, b}*: no prefix of w contains b}

L = {w ∈ {a, b}*: no prefix of w starts with a}

L = {w ∈ {a, b}*: every prefix of w starts with a}

Q5

Using Replication in a Language
Definition

L = {an : n ≥ 0}

Q6-7

