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MA/CSSE 474
Theory of Computation

Regular Expressions Intro

Your Questions?
• Monday's class 

material

• Reading Assignments

• HW5 problems
• Anything else

Still more 
language 
ambiguity!
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Regular Languages

Regular 
Language

Regular Expression

Finite State  
Machine

Describes

Accepts

Regular Expressions

The regular expressions over an alphabet  are the 
strings that can be obtained from the following recursive 
definition:

1.  is a regular expression.
2.  is a regular expression.
3. Every element of  is a regular expression.
4. If  ,  are regular expressions, then so is .
5. If  ,  are regular expressions, then so is .
6. If  is a regular expression, then so is *.
7.  is a regular expression, then so is +.
8. If  is a regular expression, then so is ().
9.  Nothing else is a regular expression.

.
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Regular Expression Examples

If  = {a, b}, the following are regular expressions:



a

(a  b)*

(abba  )+ (a  bab)

1.  is a regular expression.
2.  is a regular expression.
3. Every element of  is a regular expression.
4. If  ,  are regular expressions, then so is .
5. If  ,  are regular expressions, then so is .
6. If  is a regular expression, then so is *.
7.  is a regular expression, then so is +.
8. If  is a regular expression, then so is ().

Regular Expressions Define Languages

Define L, a semantic interpretation function for regular expressions (Let 
and  be arbitrary regular expressions over alphabet ).

1. L() = .

2. L() = {}.
3. If c   , L(c) = {c}.

4. L() = L() L(). 

5. L(  ) = L()  L(). 

6. L(*) = (L())*.  

7. L(+) = L(*) = L() (L())*.  If L() is equal to , then L(+) is also equal to 
.  Otherwise L(+) is the language that is formed by concatenating together 
one or more strings drawn from L().

8. L(()) = L(). 
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The Roles of the Rules

• Rules 1, 3, 4, 5, and 6 
give the regular 
expression language its 
power to define sets.  

• Rule 8 has grouping 
other expressions
as its only role. 

• Rules 2 and 7 appear 
to add functionality to 
the regular expression 
language, but they 
don’t.  They are very 
convenient, though.

1.  is a regular expression.
2.  is a regular expression.
3. Every element of  is a regular expression.
4. If  ,  are regular expressions, then so is .
5. If  ,  are regular expressions, then so is .
6. If  is a regular expression, then so is *.
7.  is a regular expression, then so is +.
8. If  is a regular expression, then so is ().

Operator Precedence in Regular Expressions

Regular Arithmetic
Expressions Expressions

Highest Kleene * and + exponentiation

concatenation multiplication

Lowest union addition

a b*  c d* x y2 + y x2
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Analyzing a Regular Expression

L((a  b)*b) =  L((a  b)*)  L(b)

= (L(a  b))* L(b)

= (L(a)  L(b))* L(b)

= ({a}  {b})* {b}

= {a, b}* {b}.

From English to reg exps

L = {w  {a, b}*: |w| is even}

L = {w  {0, 1}*: w is a binary representation of a positive 
multiple of 4}

L = {w  {a, b}*: w contains an odd number of a’s}
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The Details Matter

L(a*  b*)  L((a  b)*)

L((ab)*)  L(a*b*)

More Regular Expression 
Examples

(aa*)   is equivalent to

(a  )*  is equivalent to

L = {w  {a, b}*: there is no more than one b in w}

L = {w  {a, b}* : no two consecutive letters in w are the same} 
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The Details Matter
L1 = {w  {a, b}* : every a is immediately followed by  b}

A regular expression for L1:

A FSM for L1:

L2 = {w  {a, b}* : every a has a matching b somewhere}

A regular expression for L2:

A FSM for L2:

Simplifying Regular Expressions

Regex’s describe sets:
● Union is commutative:     =   .
● Union is associative: (  )   =   (  ).
●  is the identity for union:     =    = .
● Union is idempotent:     =  .

Concatenation:
● Concatenation is associative:  () = ().
●  is the identity for concatenation:    =   = .
●  is a zero for concatenation:    =   = .

Concatenation distributes 
over union:

● (  )  = ( )  ( ).  
●  (  ) = ( )  ( ). 

Kleene star:
● * = .
● * = .
●(*)* = *. 
● ** = *.  
●(  )* = (**)*. 
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Kleene’s Theorem
Finite state machines and regular expressions define the 
same class of languages.  

To prove this, we must show:

Theorem: Any language that can be defined by a regular 
expression can be accepted by some FSM and so is 
regular. 
We do reg. exp.  NDFSM because it is easiest, and this 
is sufficient because we already know NDFSM  DFSM)

Theorem: Every regular language (i.e., every language that
can be accepted by some DFSM) can be defined with a
regular expression.

For Every Regular Expression 
There is a Corresponding FSM

We’ll show this by construction.  An FSM for:

:

A single element c of :

 :
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Union

If  is the regular expression    and if both L() and 
L() are regular:

Concatenation

If  is the regular expression  and if both L() and L() 
are regular:
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Kleene Star

If  is the regular expression * and if L() is regular:

An Example

(b  ab)*

An FSM for b An FSM for a An FSM for b

An FSM for ab:
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An Example

(b  ab)*

An FSM for (b  ab):

An Example

(b  ab)*

An FSM for (b  ab)*:


