
3/21/2018

1

MA/CSSE 474
Theory of Computation

Regular Expressions Intro

Your Questions?
• Monday's class

material

• Reading Assignments

• HW5 problems
• Anything else

Still more
language
ambiguity!

3/21/2018

2

Regular Languages

Regular
Language

Regular Expression

Finite State
Machine

Describes

Accepts

Regular Expressions

The regular expressions over an alphabet are the
strings that can be obtained from the following recursive
definition:

1. is a regular expression.
2. is a regular expression.
3. Every element of is a regular expression.
4. If , are regular expressions, then so is .
5. If , are regular expressions, then so is .
6. If is a regular expression, then so is *.
7. is a regular expression, then so is +.
8. If is a regular expression, then so is ().
9. Nothing else is a regular expression.

.

3/21/2018

3

Regular Expression Examples

If = {a, b}, the following are regular expressions:

a

(a b)*

(abba)+ (a bab)

1. is a regular expression.
2. is a regular expression.
3. Every element of is a regular expression.
4. If , are regular expressions, then so is .
5. If , are regular expressions, then so is .
6. If is a regular expression, then so is *.
7. is a regular expression, then so is +.
8. If is a regular expression, then so is ().

Regular Expressions Define Languages

Define L, a semantic interpretation function for regular expressions (Let
and be arbitrary regular expressions over alphabet).

1. L() = .

2. L() = {}.
3. If c , L(c) = {c}.

4. L() = L() L().

5. L() = L() L().

6. L(*) = (L())*.

7. L(+) = L(*) = L() (L())*. If L() is equal to , then L(+) is also equal to
. Otherwise L(+) is the language that is formed by concatenating together
one or more strings drawn from L().

8. L(()) = L().

3/21/2018

4

The Roles of the Rules

• Rules 1, 3, 4, 5, and 6
give the regular
expression language its
power to define sets.

• Rule 8 has grouping
other expressions
as its only role.

• Rules 2 and 7 appear
to add functionality to
the regular expression
language, but they
don’t. They are very
convenient, though.

1. is a regular expression.
2. is a regular expression.
3. Every element of is a regular expression.
4. If , are regular expressions, then so is .
5. If , are regular expressions, then so is .
6. If is a regular expression, then so is *.
7. is a regular expression, then so is +.
8. If is a regular expression, then so is ().

Operator Precedence in Regular Expressions

Regular Arithmetic
Expressions Expressions

Highest Kleene * and + exponentiation

concatenation multiplication

Lowest union addition

a b* c d* x y2 + y x2

3/21/2018

5

Analyzing a Regular Expression

L((a b)*b) = L((a b)*) L(b)

= (L(a b))* L(b)

= (L(a) L(b))* L(b)

= ({a} {b})* {b}

= {a, b}* {b}.

From English to reg exps

L = {w {a, b}*: |w| is even}

L = {w {0, 1}*: w is a binary representation of a positive
multiple of 4}

L = {w {a, b}*: w contains an odd number of a’s}

3/21/2018

6

The Details Matter

L(a* b*) L((a b)*)

L((ab)*) L(a*b*)

More Regular Expression
Examples

(aa*) is equivalent to

(a)* is equivalent to

L = {w {a, b}*: there is no more than one b in w}

L = {w {a, b}* : no two consecutive letters in w are the same}

3/21/2018

7

The Details Matter
L1 = {w {a, b}* : every a is immediately followed by b}

A regular expression for L1:

A FSM for L1:

L2 = {w {a, b}* : every a has a matching b somewhere}

A regular expression for L2:

A FSM for L2:

Simplifying Regular Expressions

Regex’s describe sets:
● Union is commutative: = .
● Union is associative: () = ().
● is the identity for union: = = .
● Union is idempotent: = .

Concatenation:
● Concatenation is associative: () = ().
● is the identity for concatenation: = = .
● is a zero for concatenation: = = .

Concatenation distributes
over union:

● () = () ().
● () = () ().

Kleene star:
● * = .
● * = .
●(*)* = *.
● ** = *.
●()* = (**)*.

3/21/2018

8

Kleene’s Theorem
Finite state machines and regular expressions define the
same class of languages.

To prove this, we must show:

Theorem: Any language that can be defined by a regular
expression can be accepted by some FSM and so is
regular.
We do reg. exp. NDFSM because it is easiest, and this
is sufficient because we already know NDFSM DFSM)

Theorem: Every regular language (i.e., every language that
can be accepted by some DFSM) can be defined with a
regular expression.

For Every Regular Expression
There is a Corresponding FSM

We’ll show this by construction. An FSM for:

:

A single element c of :

 :

3/21/2018

9

Union

If is the regular expression and if both L() and
L() are regular:

Concatenation

If is the regular expression and if both L() and L()
are regular:

3/21/2018

10

Kleene Star

If is the regular expression * and if L() is regular:

An Example

(b ab)*

An FSM for b An FSM for a An FSM for b

An FSM for ab:

3/21/2018

11

An Example

(b ab)*

An FSM for (b ab):

An Example

(b ab)*

An FSM for (b ab)*:

