
3/19/2018

1

MA/CSSE 474

Theory of Computation

Proofs of several things
(as much as we have time for)

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW5 problems
• Tuesday's Exam
• Anything else

3/19/2018

2

My life these days

Luke Thomas
Agapie
Born 3/18/2018
Grandchild #11

Example (continued)

L = { w{a, b}* : no two adjacent characters are the same }

Equivalence classes of L:
[1] []
[2] [a, aba, ababa,
[3] [b, ab, bab, abab, …]
[4] [aa, abaa, ababb…]

3/19/2018

3

Lower bound on number of states

Theorem: Let M be a DFSM that accepts the regular
language L. The number of states in M is greater than
or equal to the number of equivalence classes of L.

Proof:
1. Suppose that the number of states in M were less
than the number of equivalence classes of L.

2. Then, by the pigeonhole principle, there must be at
least one state q that "contains" strings from more
than one equivalence classes of L.

3. But then M’s future behavior on those strings will be
identical, which is not consistent with the fact that they
are in different equivalence classes of L.

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of
equivalence classes of L is finite.

Proof: Show the two directions of the implication:

L regular the number of equivalence
classes of L is finite: If L is regular, then

The number of equivalence classes of L is
finite L regular: If the cardinality of L is finite,
then

3/19/2018

4

NDFSMtoDFSM Correctness

We will probably not have time
to finish this in class;

we will do as much as we can.
Details are in the textbook

(Appendix C)

The Algorithm ndfsmtodfsm
ndfsmtodfsm(M: NDFSM) =

1. For each state q in KM do:
1.1 Compute eps(q).

2. s' = eps(s)
3. Compute ':

3.1 active-states = {s'}.
3.2 ' = .
3.3 While there exists some element Q of active-states for

which ' has not yet been computed do:
For each character c in M do:

new-state = .
For each state q in Q do:

For each state p such that (q, c, p) do:
new-state = new-state eps(p).

Add the transition (q, c, new-state) to '.
If new-state active-states then insert it.

4. K' = active-states.
5. A' = {Q K' : Q A }.

3/19/2018

5

Correctness Proof of ndfsmtodfsm

To prove:

From any NDFSM M = (K, , , s, A), ndfsmtodfsm
constructs a DFSM M'= (K', , ', s', A'), which is
equivalent to M.

K' P(K) (a.k.a. 2K)

s' = eps(s)

A' = {Q K : Q A }

'(Q, a) = {eps(p): p K and
(q, a, p) for some qQ}

Union

Correctness Proof of ndfsmtodfsm

From any NDFSM M, ndfsmtodfsm constructs a DFSM
M', which is:

(1)Deterministic: By the definition in step 3 of ', we
are guaranteed that ' is defined for all reachable
elements of K' and all possible input characters.
Further, step 3 inserts a single value into ' for each
state-input pair, so M' is deterministic.

(2) Equivalent to M: We constructed ' so that M'
mimics an “all paths” simulation of M. We must now
prove that that simulation returns the same result that
M would.

3/19/2018

6

A Useful Lemma
Lemma: Let w be any string in *, let p and q be any states
in K, and let P be any state in K'. Then:

(q, w) |-M* (p,) iff ((eps(q), w) |-M' * (P,) and p P) .

INFORMAL RESTATEMENT OF LEMMA: In other words,
the original NDFSM M starts in state q and, after reading
the string w, can land in state p (along at least one of its
paths)

iff
the new DFSM M' must behave as follows:

Furthermore, the only-if part implies:

A Useful Lemma
Lemma: Let w be any string in *, let p and q be any
states in K, and let P be any state in K'. Then:

(q, w) |-M* (p,) iff ((eps(q), w) |-M' * (P,) and p P)
.

It turns out that we will only need this lemma for the case
where q = s, but the more general form is easier to prove
by induction. This is common in induction proofs.

Proof: We must show that ' has been defined so that the
individual steps of M', when taken together, do the right
thing for an input string w of any length. Since the
definitions describe one step at a time, we will prove the
lemma by induction on |w|.

Recall: NDFSM M = (K, , , s, A), DFSM M'= (K', , ', s', A'),

3/19/2018

7

Base Case: |w| = 0, so w =
• if part: Prove:

(eps(q),) |-M' * (P,) p P (q,) |-M*(p,)

Base Case
• only if part: We need to show:

(q,) |-M* (p,) [(eps(q),) |-M'* (P,) and p P]

3/19/2018

8

Induction Step

Let w have length k + 1. Then w = zc where z* has
length k, and c.

Induction assumption. The lemma is true for z.

So we show that, assuming that M and M' behave
identically for the first k characters, they behave
identically for the last character also and thus for the
entire string of length k + 1.

The Definition of
'(Q, a) = {eps(p) : qQ ((q, a, p))}

What We Need to Prove

• The computation of the NDFSM M:

(q, w) |-M* (p,)

and

• The computation of the DFSM M':

(eps(q), w) |-M'* (P,) and p P

The relationship between:

3/19/2018

9

What We Need to Prove

• The computation of the NDFSM M:

(q, zc) |-M* (p,)

and

• The computation of the DFSM M':

(eps(q), zc) |-M'* (P,) and p P

Rewriting w as zc:

What We Need to Prove

• The computation of the NDFSM M:

(q, zc) |-M* (si, c) |-M* (p,)

and

• The computation of the DFSM M':

(eps(q), zc) |-M'* (Q, c) |-M' (P,) and p P

In other words, after processing z, M will be in some set of
states S, whose elements we write as si. M' will be in
some "set" state that we call Q. Again, well split the
proof into two parts:

In the M derivation above, the second |-M has a * due to the possibility of
epsilon moves. In the M' derivation there is no * because of no epsilon
moves in a deterministic machine.

Breaking w into two pieces:

3/19/2018

10

If Part

We must prove:

(eps(q), zc) |-M'* (Q, c) |-M' (P,) and p P
(q, zc) |-M* (si, c) |-M* (p,)

Only If Part
We must prove:

(q, zc) |-M* (si, c) |-M* (p,)
(eps(q), zc) |-M'* (Q, c) |-M' (P,) and p P

3/19/2018

11

Back to the Theorem

• The original machine M, when started in its start
state, can consume w and end up in an accepting
state.

• (eps(s), w) |-M'* (Q,) for some Q containing some
state r A.

– In the statement of the lemma, let q equal s and p = r for
some r A.

– Then M', when started in its start state, eps(s), will consume
w and end in a state that contains r.

– But if M' does that, then it has ended up in one of its
accepting states (by the definition of A' in step 5 of the
algorithm).

– So M' accepts w (by the definition of what it means for a
machine to accept a string).

If w L(M) then:

Back to the Theorem 2

• The original machine M, when started in its start
state, will not be able to end up in an accepting state
after reading w.

• If (eps(s), w) |-M'* (Q,), then Q contains no state
r A. This follows directly from the lemma.

The two cases, taken together, show that M' accepts
exactly the same strings that M accepts.

If w L(M) (i.e. the original NDFSM does not accept w):

