MA/CSSE 474

Theory of Computation

Proofs of several things

(as much as we have time for)

Example (continued)

$L=\left\{w \in\{a, b\}^{*}:\right.$ no two adjacent characters are the same $\}$

Equivalence classes of $\approx_{\llcorner }$:
[1] [$\varepsilon]$
[2] [a, aba, ababa,
[3] [b, ab, bab, abab, ...]
[4] [aa, abaa, ababb...]

Lower bound on number of states

Theorem: Let M be a DFSM that accepts the regular language L. The number of states in M is greater than or equal to the number of equivalence classes of \approx_{L}.

Proof:

1. Suppose that the number of states in M were less than the number of equivalence classes of \approx_{L}.
2. Then, by the pigeonhole principle, there must be at least one state q that "contains" strings from more than one equivalence classes of \approx_{L}.
3. But then M's future behavior on those strings will be identical, which is not consistent with the fact that they are in different equivalence classes of $\approx_{\llcorner }$.

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence classes of \approx_{L} is finite.

Proof: Show the two directions of the implication:
L regular \rightarrow the number of equivalence classes of \approx is finite: If L is regular, then

The number of equivalence classes of \approx_{L} is finite $\rightarrow L$ regular: If the cardinality of \approx_{L} is finite, then

We will probably not have time
to finish this in class;
we will do as much as we can. Details are in the textbook
(Appendix C)

The Algorithm ndfsmtodfsm

ndfsmtodfsm(M : NDFSM) =

1. For each state q in K_{M} do:
1.1 Compute eps(q).
2. $s^{\prime}=e p s(s)$
3. Compute δ^{\prime} :
3.1 active-states $=\{\mathrm{s}\}$.
$3.2 \delta^{\prime}=\varnothing$.
3.3 While there exists some element Q of active-states for which δ^{\prime} has not yet been computed do:

For each character c in Σ_{M} do:
new-state $=\varnothing$.
For each state q in Q do:
For each state p such that $(q, c, p) \in \Delta$ do: new-state $=$ new-state $\cup e p s(p)$.
Add the transition (q, c, new-state) to δ^{\prime}.
If new-state \notin active-states then insert it.
4. $K^{\prime}=$ active-states.
5. $A^{\prime}=\left\{Q \in K^{\prime}: Q \cap A \neq \varnothing\right\}$.

Correctness Proof of ndfsmtodfsm

To prove:
From any NDFSM $M=(K, \Sigma, \Delta, s, A)$, ndfsmtodfsm constructs a DFSM $M^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, A^{\prime}\right)$, which is equivalent to M .

$$
\begin{aligned}
& K^{\prime} \subseteq \mathscr{P}(K) \quad\left(\text { a.k.a. } 2^{K}\right) \\
& s^{\prime}=\operatorname{eps}(s) \\
& A^{\prime}=\{Q \subseteq K: Q \cap A \neq \varnothing\} \\
& \delta^{\prime}(Q, a)=\begin{array}{l}
\{e p s(p): p \in K \text { and } \\
(q, a, p) \in \Delta \text { for some } q \in Q\}
\end{array}
\end{aligned}
$$

Correctness Proof of ndfsmtodfsm

From any NDFSM M, ndfsmtodfsm constructs a DFSM M^{\prime}, which is:
(1)Deterministic: By the definition in step 3 of δ ', we are guaranteed that δ^{\prime} is defined for all reachable elements of K^{\prime} and all possible input characters. Further, step 3 inserts a single value into δ ' for each state-input pair, so M^{\prime} is deterministic.
(2) Equivalent to M : We constructed δ^{\prime} so that M^{\prime} mimics an "all paths" simulation of M. We must now prove that that simulation returns the same result that M would.

A Useful Lemma

Lemma: Let w be any string in Σ^{\star}, let p and q be any states in K, and let P be any state in K^{\prime}. Then:

$$
\left.(q, w)\right|_{-}{ }^{*}(p, \varepsilon) \text { iff }\left(\left.(e p s(q), w)\right|_{-}{ }_{m}^{*}(P, \varepsilon) \text { and } p \in P\right) .
$$

INFORMAL RESTATEMENT OF LEMMA: In other words, the original NDFSM M starts in state q and, after reading the string w, can land in state p (along at least one of its paths)
iff
the new DFSM M' must behave as follows:

Furthermore, the only-if part implies:

A Useful Lemma

Lemma: Let w be any string in Σ^{*}, let p and q be any states in K, and let P be any state in K^{\prime}. Then:
$(q, w) \mid-\mu^{*}(p, \varepsilon)$ iff $\left((e p s(q), w) \mid-{ }_{m}{ }^{*}(P, \varepsilon)\right.$ and $\left.p \in P\right)$
Recall: NDFSM $M=(K, \Sigma, \Delta, s, A), \quad$ DFSM $M^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, A^{\prime}\right)$,
It turns out that we will only need this lemma for the case where $q=s$, but the more general form is easier to prove by induction. This is common in induction proofs.

Proof: We must show that δ^{\prime} has been defined so that the individual steps of M^{\prime}, when taken together, do the right thing for an input string w of any length. Since the definitions describe one step at a time, we will prove the lemma by induction on $|w|$.

Base Case: $\mid \mathbf{w |}=0$, so w = ε

- if part: Prove:

$$
\left.\left.(e p s(q), \varepsilon)\right|_{-} ^{\prime}{ }^{*}(P, \varepsilon) \wedge p \in P \longrightarrow(q, \varepsilon)\right|_{M} ^{*}(p, \varepsilon)
$$

Base Case

- only if part: We need to show:
$(q, \varepsilon) \mid{ }_{M}{ }^{*}(p, \varepsilon) \rightarrow\left[(e p s(q), \varepsilon) \mid-{ }_{M}^{*}(P, \varepsilon)\right.$ and $\left.p \in P\right]$

Induction Step

Let w have length $k+1$. Then $w=z c$ where $z \in \Sigma^{*}$ has length k, and $c \in \Sigma$.

Induction assumption. The lemma is true for z.
So we show that, assuming that M and M ' behave identically for the first k characters, they behave identically for the last character also and thus for the entire string of length $k+1$.

The Definition of $\boldsymbol{\delta}^{\prime}$

$\delta^{\prime}(Q, a)=\bigcup\{e p s(p): \exists q \in Q((q, a, p) \in \Delta)\}$

What We Need to Prove

The relationship between:

- The computation of the NDFSM M:

$$
\left.(q, w)\right|_{-} ^{*}(p, \varepsilon)
$$

and

- The computation of the DFSM M^{\prime} :

$$
\left.(e p s(q), w)\right|_{-} ^{-}{ }^{*}(P, \varepsilon) \text { and } p \in P
$$

What We Need to Prove

Rewriting w as $z c$:

- The computation of the NDFSM M:

$$
\left.(q, z c)\right|_{-} ^{*}(p, \varepsilon)
$$

and

- The computation of the DFSM M^{\prime} :

$$
(e p s(q), z c) \mid- \text { м }^{*}(P, \varepsilon) \text { and } p \in P
$$

What We Need to Prove

Breaking w into two pieces:

- The computation of the NDFSM M:

$$
\begin{gathered}
(q, z c)\left|-{ }_{M}^{*}\left(s_{i}, c\right)\right|-{ }_{M}{ }^{*}(p, \varepsilon) \\
\text { and }
\end{gathered}
$$

- The computation of the DFSM M^{\prime} :

$$
(e p s(q), z c)\left|-{ }_{M^{*}}{ }^{*}(Q, c)\right|-{ }_{M^{\prime}}(P, \varepsilon) \text { and } p \in P
$$

In other words, after processing z, M will be in some set of states S, whose elements we write as s_{i}. M' will be in some "set" state that we call Q. Again, well split the proof into two parts:

In the M derivation above, the second $\left.\right|_{M}$ has a * due to the possibility of epsilon moves. In the M' derivation there is no * because of no epsilon moves in a deterministic machine.

If Part

We must prove:

$$
\begin{aligned}
& \left.(e p s(q), z c)\right|_{-M^{*}} ^{*}(Q, c) I_{M}(P, \varepsilon) \text { and } p \in P \rightarrow \\
& \left.\left.(q, z c)\right|_{M} ^{*}\left(s_{i} ; c\right)\right|_{M} ^{*}(p, \varepsilon)
\end{aligned}
$$

Only If Part

We must prove:
$\left.(q, z c)\left|-M^{*}\left(s_{i}, c\right)\right|\right|_{M} ^{*}(p, \varepsilon) \rightarrow$
$(e p s(q), z c)\left|\left.\right|_{m^{*}} ^{*}(Q, c)\right|_{m^{*}}(P, \varepsilon)$ and $p \in P$

Back to the Theorem

If $w \in L(M)$ then:

- The original machine M, when started in its start state, can consume w and end up in an accepting state.
- $\left.\quad(e p s(s), w)\right|^{-}$m. $^{*}(Q, \varepsilon)$ for some Q containing some state $r \in A$.
- \quad In the statement of the lemma, let q equal s and $p=r$ for some $r \in A$.
- \quad Then M^{\prime}, when started in its start state, eps(s), will consume w and end in a state that contains r.
- But if M^{\prime} does that, then it has ended up in one of its accepting states (by the definition of A^{\prime} in step 5 of the algorithm).
- \quad So M^{\prime} accepts w (by the definition of what it means for a machine to accept a string).

Back to the Theorem 2

If $w \notin L(M)$ (i.e. the original NDFSM does not accept w):

- The original machine M, when started in its start state, will not be able to end up in an accepting state after reading w.
- If (eps(s),w) $\left.\right|_{-m^{*}}(Q, \varepsilon)$, then Q contains no state $r \in A$. This follows directly from the lemma.

The two cases, taken together, show that M' accepts exactly the same strings that M accepts.

