

Theorem: Let *M* be a DFSM that accepts the regular language *L*. The number of states in *M* is greater than or equal to the number of equivalence classes of \approx_{I} .

Proof:

1. Suppose that the number of states in *M* were less than the number of equivalence classes of \approx_L .

2. Then, by the pigeonhole principle, there must be at least one state *q* that "contains" strings from more than one equivalence classes of \approx_L .

3. But then *M*'s future behavior on those strings will be identical, which is not consistent with the fact that they are in different equivalence classes of \approx_L .

たの課	A Useful Lemma
20707000	Lemma : Let w be any string in Σ^* , let p and q be any states in K, and let P be any state in K'. Then:
NY.	$(q, w) \mid \cdot_{M}^{*} (p, \varepsilon) \text{ iff } ((eps(q), w) \mid \cdot_{M}'^{*} (P, \varepsilon) \text{ and } p \in P)$
and the second	Recall: NDFSM $M = (K, \Sigma, \Delta, s, A)$, DFSM $M' = (K', \Sigma, \delta', s', A')$,
	It turns out that we will only need this lemma for the case where $q = s$, but the more general form is easier to prove by induction. This is common in induction proofs.
	Proof: We must show that δ' has been defined so that the individual steps of M' , when taken together, do the right thing for an input string w of any length. Since the definitions describe one step at a time, we will prove the lemma by induction on $ w $.

