

What do we Study in Theory of Computation?

Larger issues, such as

- What can be computed, and what cannot?
- What problems are tractable?
- What are reasonable mathematical models of computation?

Applications of the Theory Finite State Machines (FSMs) for parity checkers, vending machines, communication protocols, and building security devices. Interactive games as nondeterministic FSMs. Programming languages, compilers, and context-free grammars.

- Natural languages are mostly context-free. Speech understanding systems use probabilistic FSMs.
- Computational biology: DNA and proteins are strings.
- The undecidability of a simple security model.
- Artificial intelligence: the undecidability of first-order logic.

Questions about course policies and procedures?

- From Syllabus?
- Schedule page?
- Things said in class yesterday?
- Anything else?
- Attendance?
- Late Days?
- How to find my office hours for a given day?
- Anything else?

This Proof as a 474 HW Problem

- An example of how I would write up this proof if it was a 474 HW problem will be linked from the schedule page this afternoon.
- You do not need to copy it exactly in your proofs, but it gives an idea of the kinds of things to include or not include.
- Also, I will post another version of the slides that includes the parts that I wrote on the board today.

