
3/6/2018

1

MA/CSSE 474

Theory of Computation

Course Intro
T S proof from Day 1

More about strings and languages

Today's Agenda
• Roll call

• Student questions

• Introductions and Course overview

• Overview of yesterday's proof
– I placed online a "straight-line" write-up of the

proof in detail, without the "here is how a proof
works" commentary that was in the slides. See
Session 1 resources on schedule page

• Responses to Reading Quiz 1 (0 4 8 12)

• Languages and Strings

• (if time) Operations on Languages

3/6/2018

2

Introductions
• Roll Call

– If I mispronounce your name, or you want to be
called by a nickname or different name but did not
list that yesterday, let me know.

– I have had most of you in class, but for some of
you it has been a long time.

• Graders: Fred Zhang, Coleman Gibson, Kieran Groble

• Instructor: Claude Anderson: F-210, x8331

• Random Note: I often put more on my
PowerPoint slides for a day than I expect
we can actually cover that day, "just in
case".

Instructor Professional Background

• Formal Education:
– BS Caltech, Mathematics 1975
– Ph.D. Illinois, Mathematics 1981
– MS Indiana, Computer Science 1987

• Teaching:
– TA at Illinois, Indiana 1975-1981, 1986-87
– Wilkes College (now Wilkes University) 1981-88
– RHIT 1988 –??

• Major Consulting Gigs:
– Pennsylvania Funeral Directors Assn 1983-88
– Navistar International 1994-95
– Beckman Coulter 1996-98
– ANGEL Learning 2005-2008

• Theory of Computation history

See optional
video on
Moodle for
some personal
background

3/6/2018

3

What do we Study in
Theory of Computation?

• Larger issues, such as
– What can be computed, and what cannot?

– What problems are tractable?

– What are reasonable mathematical models of
computation?

Applications of the Theory

• Finite State Machines (FSMs) for parity checkers,
vending machines, communication protocols, and
building security devices.

• Interactive games as nondeterministic FSMs.
• Programming languages, compilers, and context-free

grammars.
• Natural languages are mostly context-free. Speech

understanding systems use probabilistic FSMs.
• Computational biology: DNA and proteins are strings.
• The undecidability of a simple security model.
• Artificial intelligence: the undecidability of first-order

logic.

3/6/2018

4

(1) Lexical analysis: Scan the program and break it up into variable
names, numbers, operators, punctuation, etc.

(2) Parsing: Create a tree that corresponds to the sequence of
operations that should be executed, e.g.,

/

+ 10

2 5
(3) Optimization: Realize that we can skip the first assignment
since the value is never used, and that we can pre-compute the
arithmetic expression, since it contains only constants.
(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) useful it does.

Some Language-related Problems
int alpha, beta;
alpha = 3;
beta = (2 + 5) / 10;

A Framework for Analyzing Problems

We need a single framework in which we can
analyze a very diverse set of problems.

The framework we will use is

Language Recognition

Most interesting problems can be restated as
language recognition problems.

3/6/2018

5

What we will focus on in 474

• Definitions

• Theorems

• Examples

• Proofs

• A few applications, but mostly theory

Textbook
• Thorough

• Literate

• Large (and larger!)

• Theory and
Applications

• We’ll focus more on
theory; applications
are there for you to
see

3/6/2018

6

Online Materials Locations
– On the Schedule page – public stuff

• Reading, HW, topics, resources,

• Suggestion: bookmark schedule page

– On Moodle – personal stuff
• surveys, solutions, grades

– On piazza.com:
• Discussion forums and announcements

– csse474-staff@rose-hulman.edu

– Many things are under construction and
subject to change, especially the course
schedule.

My most time-consuming
courses (for students)

This is my perception, not a scientific study!

• 220 (object-oriented)

• 473 (design and analysis of algorithms)

• 280 (web programming)

• 304 (PLC)

• 404 (Compilers)

• 474 (Theory of Computation)

• 230 (Data Structures & Algorithms)

The learning outcomes
include a lot of difficult
material. Most of you
will need a lot practice in
order to understand it.

3/6/2018

7

Questions about course policies
and procedures?

• From Syllabus?

• Schedule page?

• Things said in class yesterday?

• Anything else?

• Attendance?

• Late Days?

• How to find my office hours for a given
day?

• Anything else?

Overview of yesterday's proof
• S = L(M), language accepted by M

• T = {w ∊ {0,1}* : w does not have 11 as substring}

• Show that S = T. i.e., S ⊆ T and T ⊆ S

• S ⊆ T: i.e. if wϵS, then wϵT
– By induction on |w|, showed

• If δ(q0, w) = q0, w has no 11 and does not end in 1.

• If δ(q0, w) = q1, w has no 11 and ends in 1.

• T ⊆ S: i.e. if wϵT, then wϵS.
– We show the contrapositive: if w∉S, then w∉T.

• If w∉S then δ(q0, w) = q2 (the only non-accepting state).

• Show by induction that if δ(q0, w) = q2, then w contains 11.

• This uses the property of q1 that was proved by induction as
part of S ⊆ T.

3/6/2018

8

15

Part B: T ⊆ S

• Now, we must prove: if w has no 11’s,
then w is accepted by M

• Contrapositive : If w is not accepted by M

then w has 11
as a substring. Key idea: contrapositive

of “if X then Y” is the
equivalent statement
“if not Y then not X.”

X

Y

16

Using the Contrapositive
• Contrapositive : If w is not accepted by M

then w has 11 as a substring.
• Base case is again vacuously true.
• Because there is a unique transition from

every state on every input symbol, each w
gets the DFSM to exactly one state.

• The only way w can not be accepted is if it
takes the DFSM M to q2. How can this
happen?

3/6/2018

9

17

Using the Contrapositive – (2)
Looking at the DFSM, there are two
possibilities: (recall that w=ua)
1. δ(q0,u) = q1 and a is 1. We proved
earlier that if δ(q0,u) = q1, then u ends in 1.
Thus w ends in 11.
2. δ(q0,u) = q2. In this case, the IH says
that u contains 11 as a substring. So does
w=ua.

Your 474 HW induction proofs
• Can be slightly less detailed

– Many of the details above were about how the
proof process works in general, rather than
about the proof itself.

– You can assume that the reader knows the
proof techniques.

• You must always make it clear what the IH
is, and where you apply it.
– When in doubt about whether to include a

detail, include it!

• Well-constructed proofs often contain
more words than symbols.

3/6/2018

10

This Proof as a 474 HW Problem
• An example of how I would write up this

proof if it was a 474 HW problem will be
linked from the schedule page this
afternoon.

• You do not need to copy it exactly in your
proofs, but it gives an idea of the kinds of
things to include or not include.

• Also, I will post another version of the
slides that includes the parts that I wrote
on the board today.

Responses to Reading Quiz 1

3/6/2018

11

Responses to Reading Quiz 1

• From #4: ℘(∅) = { ∅ } (not ℘(∅) = ∅)
What is ℘(℘(∅))?

• From #4: {a, b} X {1, 2, 3} X ∅ = ∅
• #10: (representing {1, 4, 9, 16, 25, 36, …}

in the form: {x A : P(x)}
{x ∊ : x>0 ∧ ∃y∊ (y*y = x)}

Why not {x ∊ : x>0 ∧ sqrt(x) ∊ } ?

• From #15: x (y (y < x)).
Why is this not satisfiable? (e, g, by x=3, y=2)

Responses to Reading Quiz 1

#16: Let be the set of nonnegative
integers. Let A be the set of nonnegative
integers x such that x 3 0.
Show that | | = |A|.
Define a function f : →A by f(n) = 3n.

f is one-to-one: if f(n) = f(m), then 3n = 3m,
so m=n.
f is onto: Let k ∊ A. Then k = 3m for some
m ∊ . So k = f(m).

3/6/2018

12

Responses to Reading Quiz 1

#18: Prove by induction: n>0 (n! 2n-1).
Why is the following "proof" of the induction
step shaky at best, perhaps wrong?

(n+1)! 2n what we're trying to show

(n+1)n! 2(2n-1) definitions of ! And exponents

(n+1) 2 induction hypothesis (n! 2n-1)

Since n is at least 1, this statement is true,
therefore (n+1)! 2n is true.

Languages and Strings

3/6/2018

13

• A string is a finite sequence (possibly
empty) of symbols from some finite
alphabet .

• is the empty string (some books/papers
use instead)

• * is the set of all possible strings over an
alphabet

• Counting: |s| is the number of symbols in
s. || = 0 |1001101| = 7

• #c(s) is the number of times that c occurs
in s. #a(abbaaa) = 4.

Properties of Strings

More Functions on Strings

Concatenation: st is the concatenation of s and t.

If x = good and y = bye, then xy = goodbye.

Note that |xy| = |x| + |y|.

 is the identity for concatenation of strings. So:

x (x = x = x).

Concatenation is associative. So:

s, t, w ((st)w = s(tw)).

3/6/2018

14

More Functions on Strings

Replication: For each string w and each
natural number i, the string wi is:

w0 = , wi+1 = wi w
Examples:

a3 = aaa
(bye)2 = byebye
a0b3 = bbb

Reverse: For each string w, wR is defined as:
if |w| = 0 then wR = w =
if |w| 1 then:

a (u * (w = ua)).
So define wR = a u R.

Concatenation and Reverse of Strings

Theorem: If w and x are strings, then (w x)R = xR wR.

Example:

(nametag)R = (tag)R (name)R = gateman

Proof on next slide

3/6/2018

15

Concatenation and Reverse of Strings
Proof: By induction on |x|:

|x| = 0: Then x = , and (wx)R = (w)R = (w)R = wR = R wR = xR wR.

n 0 (((|u| = n) ((w u)R = uR wR))
((|x| = n + 1) ((w x)R = xR wR))):

Consider any string x, where |x| = n + 1. Then x = u a for some
symbol a and |u| = n. So:

(w x)R = (w (u a))R rewrite x as ua
= ((w u) a)R associativity of concatenation
= a (w u)R definition of reversal
= a (uR wR) induction hypothesis
= (a uR) wR associativity of concatenation
= (ua)R wR definition of reversal
= xR wR rewrite ua as x

