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MA/CSSE 474

Theory of Computation

Course Intro
T  S proof from Day 1

More about strings and languages

Today's Agenda
• Roll call

• Student questions

• Introductions and Course overview

• Overview of yesterday's proof
– I placed online a "straight-line" write-up of the 

proof in detail, without the "here is how a proof 
works" commentary that was in the slides. See 
Session 1 resources on schedule page

• Responses to Reading Quiz 1 (0 4 8 12)

• Languages and Strings

• (if time) Operations on Languages
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Introductions
• Roll Call

– If I mispronounce your name, or you want to be 
called by a nickname or different name but did not 
list that yesterday, let me know.

– I have had most of you in class, but for some of 
you it has been a long time.

• Graders: Fred Zhang, Coleman Gibson, Kieran Groble

• Instructor:  Claude Anderson: F-210, x8331

• Random Note: I often put more on my 
PowerPoint slides for a day than I expect 
we can actually cover that day, "just in 
case".

Instructor Professional Background

• Formal Education:
– BS Caltech, Mathematics 1975
– Ph.D. Illinois, Mathematics 1981
– MS Indiana, Computer Science 1987

• Teaching:
– TA at Illinois, Indiana 1975-1981, 1986-87
– Wilkes College (now Wilkes University) 1981-88
– RHIT 1988 –??

• Major Consulting Gigs:
– Pennsylvania Funeral Directors Assn 1983-88
– Navistar International 1994-95
– Beckman Coulter 1996-98
– ANGEL Learning 2005-2008 

• Theory of Computation history

See optional 
video on 
Moodle for 
some personal 
background
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What do we Study in
Theory of Computation?

• Larger issues, such as
– What can be computed, and what cannot?

– What problems are tractable?

– What are reasonable mathematical models of 
computation?

Applications of the Theory

• Finite State Machines (FSMs) for parity checkers, 
vending machines, communication protocols, and 
building security devices.

• Interactive games as nondeterministic FSMs.
• Programming languages, compilers, and context-free 

grammars.
• Natural languages are mostly context-free.  Speech 

understanding systems use probabilistic FSMs.
• Computational biology: DNA and proteins are strings. 
• The undecidability of a simple security model.
• Artificial intelligence: the undecidability of first-order 

logic.
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(1) Lexical analysis: Scan the program and break it up into variable 
names, numbers, operators, punctuation, etc.

(2) Parsing: Create a tree that corresponds to the sequence of 
operations that should be executed, e.g.,

/

+               10

2         5
(3) Optimization: Realize that we can skip the first assignment 
since the value is never used, and that we can pre-compute the 
arithmetic expression, since it contains only constants.
(4) Termination: Decide whether the program is guaranteed to halt.
(5) Interpretation: Figure out what (if anything) useful it does.

Some Language-related Problems
int alpha, beta;
alpha = 3;
beta = (2 + 5) / 10;

A Framework for Analyzing Problems

We need a single framework in which we can 
analyze a very diverse set of problems.

The framework we will use is 

Language Recognition

Most interesting problems can be restated as 
language recognition problems.



3/6/2018

5

What we will focus on in 474

• Definitions

• Theorems

• Examples

• Proofs

• A few applications, but mostly theory

Textbook
• Thorough

• Literate

• Large (and larger!)

• Theory and 
Applications

• We’ll focus more on 
theory; applications 
are there for you to 
see
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Online Materials Locations
– On the Schedule page – public stuff 

• Reading, HW, topics, resources, 

• Suggestion: bookmark schedule page

– On Moodle – personal stuff 
• surveys, solutions, grades

– On piazza.com:
• Discussion forums and announcements

– csse474-staff@rose-hulman.edu

– Many things are under construction and 
subject to change, especially the course 
schedule.

My most time-consuming 
courses (for students)

This is my perception, not a scientific study! 

• 220 (object-oriented)

• 473 (design and analysis of algorithms)

• 280 (web programming)

• 304 (PLC)

• 404 (Compilers)

• 474 (Theory of Computation)

• 230 (Data Structures & Algorithms)

The learning outcomes 
include a lot of difficult 
material.  Most of you 
will need a lot practice in 
order to understand it.
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Questions about course policies 
and procedures?

• From Syllabus?

• Schedule page?

• Things said in class yesterday?

• Anything else?

• Attendance?

• Late Days?

• How to find my office hours for a given 
day?

• Anything else?

Overview of yesterday's proof
• S = L(M), language accepted by M  

• T = {w ∊ {0,1}* : w does not have 11 as substring}

• Show that S = T. i.e., S ⊆ T  and T ⊆ S

• S ⊆ T:  i.e. if wϵS, then wϵT
– By induction on |w|, showed

• If δ(q0, w) = q0, w has no 11 and does not end in 1.

• If δ(q0, w) = q1, w has no 11 and ends in 1.

• T ⊆ S:  i.e. if wϵT, then wϵS.  
– We show the contrapositive:  if w∉S, then w∉T.

• If w∉S then δ(q0, w) = q2 (the only non-accepting state). 

• Show by induction that if  δ(q0, w) = q2, then w contains 11. 

• This uses the property of q1 that was proved by induction as 
part of S ⊆ T.
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Part B: T ⊆ S

• Now, we must prove: if w has no 11’s, 
then w is accepted by M

• Contrapositive : If w is not accepted by M

then w has 11
as a substring. Key idea: contrapositive

of “if X then Y” is the
equivalent statement
“if not Y then not X.”

X

Y

16

Using the Contrapositive
• Contrapositive : If w is not accepted by M

then w has 11 as a substring.
• Base case is again vacuously true. 
• Because there is a unique transition from 

every state on every input symbol, each w 
gets the DFSM to exactly one state.

• The only way w can not be accepted is if it 
takes the DFSM M to q2. How can this 
happen?
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Using the Contrapositive – (2)
Looking at the DFSM, there are two 
possibilities: (recall that w=ua) 
1. δ(q0,u) = q1 and a is 1.  We proved 
earlier that if δ(q0,u) = q1,  then u ends in 1.  
Thus w ends in 11.
2. δ(q0,u) = q2. In this case, the IH says 
that u contains 11 as a substring. So does 
w=ua.

Your 474 HW induction proofs
• Can be slightly less detailed

– Many of the details above were about how the 
proof process works in general, rather than 
about the proof itself.

– You can assume that the reader knows the 
proof techniques.

• You must always make it clear what the IH 
is, and where you apply it.
– When in doubt about whether to include a 

detail, include it!

• Well-constructed proofs often contain 
more words than symbols.
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This Proof as a 474 HW Problem
• An example of how I would write up this 

proof if it was a 474 HW problem will be 
linked from the schedule page this 
afternoon.

• You do not need to copy it exactly in your 
proofs, but it gives an idea of the kinds of 
things to include or not include.

• Also, I will post another version of the 
slides that includes the parts that I wrote 
on the board today. 

Responses to Reading Quiz 1
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Responses to Reading Quiz 1

• From #4: ℘(∅) = { ∅ } (not ℘(∅) = ∅)
What is ℘(℘(∅))?

• From #4: {a, b} X {1, 2, 3} X ∅ = ∅
• #10: (representing {1, 4, 9, 16, 25, 36, …} 

in the form:   {x  A : P(x)} 
{x ∊ :  x>0 ∧ ∃y∊ (y*y = x)}

Why not {x ∊ :  x>0 ∧ sqrt(x) ∊ } ?

• From #15: x  (y  (y < x)).
Why is this not satisfiable? (e, g, by x=3, y=2) 

Responses to Reading Quiz 1

#16: Let be the set of nonnegative 
integers.  Let A be the set of nonnegative 
integers x such that x 3 0.  
Show that | | = |A|.
Define a function f : →A by f(n) = 3n.

f is one-to-one: if f(n) = f(m), then 3n = 3m, 
so m=n.
f is onto: Let k ∊ A.  Then k = 3m for some 
m ∊ .  So k = f(m).
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Responses to Reading Quiz 1

#18: Prove by induction: n>0 (n!  2n-1).  
Why is the following "proof" of the induction 
step shaky at best, perhaps wrong?

(n+1)!  2n                 what we're trying to show

(n+1)n!  2(2n-1) definitions of ! And exponents 

(n+1)  2               induction hypothesis (n!  2n-1)

Since n is at least 1, this statement is true, 
therefore (n+1)!  2n is true.

Languages and Strings
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• A string is a finite sequence (possibly 
empty) of symbols from some finite 
alphabet . 

•  is the empty string (some books/papers 
use  instead)

• * is the set of all possible strings over an 
alphabet 

• Counting: |s| is the number of symbols in 
s. || = 0 |1001101| = 7

• #c(s) is the number of times that c occurs 
in s.  #a(abbaaa) = 4.

Properties of Strings

More Functions on Strings

Concatenation: st is the concatenation of s and t.  

If x = good and y = bye, then xy = goodbye. 

Note that |xy| = |x| + |y|.

 is the identity for concatenation of strings.  So:

x (x  =  x = x).

Concatenation is associative.  So:

s, t, w ((st)w = s(tw)).
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More Functions on Strings

Replication: For each string w and each 
natural number i, the string wi is:

w0 = ,  wi+1 = wi w
Examples:

a3 = aaa
(bye)2 = byebye
a0b3 = bbb

Reverse: For each string w, wR is defined as:
if |w| = 0 then wR = w = 
if |w|  1 then:

a   (u  * (w = ua)). 
So define wR = a u R.

Concatenation and Reverse of Strings 

Theorem: If w and x are strings, then (w x)R = xR wR.  

Example:

(nametag)R = (tag)R (name)R = gateman

Proof on next slide
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Concatenation and Reverse of Strings 
Proof: By induction on |x|:

|x| = 0:  Then x = , and (wx)R = (w )R = (w)R =  wR = R wR = xR wR. 

n  0 (((|u| = n)  ((w u)R = uR wR))  
((|x| = n + 1)  ((w x)R = xR wR))):

Consider any string x, where |x| = n + 1. Then x = u a for some 
symbol a and |u| = n.  So:

(w x)R = (w (u a))R rewrite x as ua
= ((w u) a)R associativity of concatenation
= a (w u)R definition of reversal
= a (uR wR) induction hypothesis
= (a uR) wR associativity of concatenation
= (ua)R wR definition of reversal
= xR wR rewrite ua as x


