Name: \qquad Grade: \qquad <-- instructor use

1. Show an NDFSM for the language
$L=\left\{w \in\{0,1\}^{*}: W\right.$ is the binary encoding of a positive integer that is divisible by 16 or is odd $\}$
2. For this NDFSM for $b^{*}(b(a \cup c) c \cup b(a \cup b)(c \cup \varepsilon))^{*} b$:

What are the values of eps?

$\operatorname{eps}(\mathrm{q} 7)=$	$\operatorname{eps}(\mathrm{q} 2)=$
$\operatorname{eps}(q 3)=$	$\operatorname{eps}(\mathrm{q} 4)=$
$\operatorname{eps}(\mathrm{q} 5)=$	$\operatorname{eps}(\mathrm{q} 0)=$
$\operatorname{eps}(q 7)=$	$\operatorname{eps}(\mathrm{q} 8)=$

3. Trace the simulation of this machine with input bbacb.
4. Show the creation of the first few states of an equivalent DFSM.
5. Given a language L, two strings w and x in $\Sigma_{L} *$ are indistinguishable with respect to L, written $w \approx_{L} x$, iff (English statement):
(first-order logic statement):
6. Show that \approx_{L} is an equivalence relation
7. Tell your instructor about anything from today's session (or from the course so far) that you found confusing or still have a question about. If none, please write "None".
