Appendix A from the textbook

You need to read this appendix and complete the quiz (sent in a previous email) before you come to class on Day 1.

The Rich book has help for you in Appendix A (Sections 1-7, about 45 pages). Appendix A is a review of the Mathematics needed to understand this textbook. I suggest that you read it carefully before the course starts. Almost all of this appendix should be things that you saw in Disco I \& 2 courses. But there may be some things that were not emphasized by your instructor or that did not stick in your long-term memory. And it is good to get into this author's use of terminology, etc. before reading the book. Pay special attention to the section on proof techniques.

The contents of that appendix are approximately the background that I expect you to have as you come into this course. We will spend a little bit of time at the beginning of the course reviewing some highlights of Appendix A. When you look carefully at Appendix A before the course starts, if there is a lot of material that is new or hazy to you, spend significant time on it before the course begins or during the first few days.

In this course you will be doing a number of proofs, including proofs by induction. If your previous courses did not bring you to a high comfort level with writing inductive proofs, I especially recommend that you work on that before the course begins. Many of the other proof techniques from Appendix A will be useful for the course also, so you should review all of them.

To give you an idea of whether you need to review in order to be able to get a good start in the course, l am listing some of the topics from Appendix A. If a few of them are fuzzy or unfamiliar, a little extra work after the term starts should suffice to catch you up

```
Logic
    Boolean propositional logic
    Well-formed formulas and propositions
    Truth tables
    Axioms and proofs
    Modus ponens, modus tolens
First-order logic
            Predicates, terms, expressions, free and bound variables,
            Universal and existential quantifiers
            Interpretations and models; valid, satisfiable, and unsatisfiable formulas
            Quantifier exchange, universal instantiation, existential generalization Sets
Enumeration of a set
Finite, countable, and uncountably infinite sets
Subset, intersection, union, difference, power set
Partitions of a set
Relations
Cartesian product of two sets
Inverse of a relation, graph of a relation
Reflexive, transitive, symmetric, antisymmetric, equivalence relation, equivalence classes
```

Orderings and partial orderings
Functions
Domain, range, arity, total and partial functions
Commutativity, associativity, distributivity, identity, inverse elements
One-to-one and onto functions
Closures
What it means for a set to be closed under a property
Transitive and reflexive closures
Closure under functions
Proof techniques.
Proof by:
Construction
Contradiction
Counterexample
Case Enumeration
Mathematical induction
Pigeonhole principle
Showing that two sets are equal
Showing that a set is finite or countably infinite
Diagonalization: Showing that a set is uncountable (this is not a prerequisite for 474)
Analyzing complexity (big-O and its cousins)
You should also read pages xii-xv in the preface.
The first reading assignment over new material after the course starts: You should read Chapters 1 and 2 (both are very short) on the first day of the course (or before that).

