MA/CSSE 474 HW 14 problems (highlighted problems are the ones to turn in)

Be sure to read the numerous questions and answers in the main assignment document

13.13

(#1)

13.13d

(#2)6

13.14

(#3)6,9

14.1a

(#4)6

14.1c

(#5) <mark>9</mark>

14.1d

(#6)

14.1e

(#7)

17.1a

(#8)6

17.1b

(#9)

17.3a

(#10)9

17.3b-d (#11) 13. Are the context-free languages closed under each of the following functions? Prove your answer.

a. $chop(L) = \{w: \exists x \in L \ (x = x_1cx_2 \land x_1 \in \Sigma_L^* \land x_2 \in \Sigma_L^* \land c \in \Sigma_L \land |x_1| = |x_2| \land w = x_1x_2\}\}$

b. $mix(L) = \{w : \exists x, y, z : (x \in L, x = yz, |y| = |z|, w = yz^{R})\}$

c. $pref(L) = \{w : \exists x \in \Sigma^*(wx \in L)\}$

d. $middle(L) = \{x : \exists y, z \in \Sigma^*(yxz \in L)\}$

e. Letter substitution

f. $shuffle(L) = \{w : \exists x \in L \ (w \text{ is some permutation of } x)\}$

g. copyreverse $(L) = \{w : \exists x \in L \ (w = xx^R)\}$

14. Let $alt(L) = \{x : \exists y, n \ (y \in L, |y| = n, n > 0, y = a_1 \cdots a_n, \forall i \le n \ (a_i \in \Sigma), \text{ and } x = a_1 a_2 a_5 \cdots a_k, \text{ where } k = (\text{if } n \text{ is even then } n - 1 \text{ else } n))\}.$

a. Consider $L = a^n b^n$. Clearly describe $L_1 = alt(L)$.

b. Are the context free languages closed under the function alt? Prove your answer.

1. Give a decision procedure to answer each of the following questions:

a. Given a regular expression α and a PDA M, is the language accepted by M a subset of the language generated by α ?

b. Given a context-free grammar G and two strings s_1 and s_2 , does G generate s_1s_2 ?

c. Given a context-free grammar G, does G generate at least three strings?

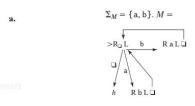
d. Given a context-free grammar G, does G generate any even length strings?

e. Given a regular grammar G, is L(G) context-free?

1. Give a short English description of what each of these Turing machines does:

If L is the language denoted by r.e. (ab)*, then alt(L) is denoted by r.e. a*. If L is the language denoted by r.e. (abcdefg)*, then alt(L) is denoted by r.e. (aceg)*.

If L is the language denoted by r.e. a or the language denoted by r.e. a*, then alt(L) is L.



b.

 $\Sigma_M = \{a, b\}. M =$ $R_0 R_0 R_0 1 L_0 L_0$

17.1a Don't just describe in English the *individual steps* the machine makes. Your answer should be a global one: in particular, describe how the final tape content is different from the original tape content.

- 3. Construct a standard, deterministic, one-tape Turing machine M to compute each of the following functions:
 - a. The function sub_3 , which is defined as follows:

$$sub_3(n) = n - 3 \text{ if } n > 2$$

0 if $n \le 2$.

Specifically, compute sub_3 of a natural number represented in binary. For example, on input 10111, M should output 10100. On input 11101, M should output 11010. (*Hint*: You may want to define a subroutine.)

- b. Addition of two binary natural numbers (as described in Example 17.13). Specifically, given the input string $\langle x \rangle$; $\langle y \rangle$, where $\langle x \rangle$ is the binary encoding of a natural number x and $\langle y \rangle$ is the binary encoding of a natural number y, M should output $\langle z \rangle$, where z is the binary encoding of x + y. For example, on input 101; 11, M should output 1000.
- c. Multiplication of two unary numbers. Specifically, given the input string $\langle x \rangle$; $\langle y \rangle$, where $\langle x \rangle$ is the unary encoding of a natural number x and $\langle y \rangle$ is the unary encoding of a natural number y, M should output $\langle z \rangle$, where z is the unary encoding of xy. For example, on input 111;1111, M should output 111111111111.
- d. The proper subtraction function monus, which is defined as follows:

$$monus(n, m) = n - m \text{ if } n > m$$

 $0 \text{ if } n \leq m.$

Specifically, compute *monus* of two natural numbers represented in binary. For example, on input 101;11, M should output 10. On input 11;101, M should output 0.

(#12) <mark>9</mark>

17.6

(#13) **3**

4. Construct a Turing machine M that computes the function $f: \{a, b\}^* \to N$, where: $f(x) = \text{the unary encoding of } \max(\#_a(x), \#_b(x)).$

For example, on input aaaabb, M should output 1111. M may use more than one tape. It is not necessary to write the exact transition function for M. Describe it in clear English.

6. Let M be a three-tape Turing machine with $\Sigma = \{a, b, c\}$ and $\Gamma = \{a, b, c, \square, 1, 2\}$. We want to build an equivalent one-tape Turing machine M' using the technique described in Section 17.3.1. How many symbols must there be in Γ' ?