474 HW 13 problems (highlighted problems are the ones to turn in)

ſ

13.1a (#1) 6 13.1b (#2) 13.1c (#3) 12 13.1d (#4) 6 13.1f (#5) 9 13.1g (#6) 12.1b	 For each of the following languages L, state whether L is regular, context-free but not regular, or not context-free and prove your answer. a. {xy: x, y ∈ {a, b}* and x = y }. b. {(ab)ⁿaⁿbⁿ: n > 0}. c. {x#y: x, y ∈ {0, 1}* and x ≠ y}. d. {aⁱbⁿ: i, n > 0 and i = n or i = 2n}. e. {wx: w = 2 · x and w ∈ a⁺b⁺ and x ∈ a⁺b⁺}. f. {aⁿb^mc^k: n, m, k ≥ 0 and m ≤ min (n, k)}. g. {xyx^R: x ∈ {0, 1}⁺ and y ∈ {0, 1}*}. h. {xwx^R: x, w ∈ {a, b}⁺ and x = w }. i. {ww^Rw: w ∈ {a, b}* and x = w }. j. {wxw: w = 2 · x and w ∈ {a, b}* and x ∈ {c}*}. k. {aⁱ: i ≥ 0}{bⁱ: i ≥ 0}{aⁱ: i ≥ 0}.
13.1h (#7) 13.1i (#8) 9 13.1k (#9) 13.1l (#10) 9 13.1p (#11)	 1. {x ∈ {a, b}* : x is even and the first half of x has one more a than does the second half}. m. {w ∈ {a, b}* : #_a(w) = #_b(w) and w does not contain either the substring aaa or abab}. n. {aⁿb²ⁿc^m : n, m ≥ 0} ∩ {aⁿb^mc^{2m} : n, m ≥ 0}. o. {x c y : x, y ∈ {0, 1}* and y is a prefix of x}. p. {w : w = uu^R or w = uaⁿ : n = u , u ∈ {a, b}* q. L(G), where G = S → aSa S → SS S → ε r. {w ∈ (A-Z, a-z, ., blank)⁺ : there exists at least one duplicated, capitalized word
13.1q (#12) 13.1w (#13) 9	 in w). For example, the string, The history of China can be viewed from the perspective of an outsider or of someone living in China, ∈ L. s. ¬L₀, where L₀ = {ww : w ∈ {a, b}*}. t. L*, where L = {0*1ⁱ0*1ⁱ0* : i ≥ 0}. u. ¬AⁿBⁿ. v. {ba^jb: j = n² for some n ≥ 0}. For example, baaaab ∈ L. w. {w ∈ {a, b, c, d}*: #_b(w) ≥ #_c(w) ≥ #_d(w) ≥ 0}.

<mark>13.3</mark> (#14) <mark>9</mark>	3. Let $L = \{a^n b^m c^n d^m : n, m \ge 1\}$. L is interesting because of its similarity to a useful fragment of a typical programming language in which one must declare procedures before they can be invoked. The procedure declarations include a list of the formal parameters. So now imagine that the characters in a^n correspond to the formal parameter list in the declaration of procedure 1. The characters in b^m correspond to the formal parameter list in the declaration of procedure 2. Then the characters in c^n and d^m correspond to the parameter lists in an invocation of procedure 1 and procedure 2 respectively, with the requirement that the number of parameters in the invocations match the number of parameters in the declarations. Show that L is not context-free.
	4. Without using the Pumping Theorem, prove that $L = \{w \in \{a, b, c\}^* : \#_a(w) = \#_b(w) = \#_c(w) \text{ and } \#_a(w) > 50\}$ is not context-free.
13.4	5. Give an example of a context-free language $L (\neq \Sigma^*)$ that contains a subset L_1 that is not context-free. Prove that L is context free. Describe L_1 and prove that it is not context-free.
(#15)	6. Let $L_1 = L_2 \cap L_3$.
	a. Show values for L_1 , L_2 , and L_3 , such that L_1 is context-free but neither L_2 nor L_3 is. b. Show values for L_1 , L_2 , and L_3 , such that L_2 is context-free but neither L_1 nor L_3 is.
	 7. Give an example of a context-free language L, other than one of the ones in the book, where ¬L is not context-free.
	 Theorem 13.7 tells us that the context-free languages are closed under intersec- tion with the regular languages. Prove that the context-free languages are also closed under union with the regular languages.
13.8 (#16)	9. Complete the proof that the context-free languages are not closed under maxstring by showing that $L = \{a^i b^j c^k : k \le i \text{ or } k \le j\}$ is context-free but maxstring(L) is not context-free.
<mark>13.9</mark>	12. Define the leftmost maximal P subsequence m of a string w as follows:
(#17) <mark>6</mark>	• <i>P</i> must be a nonempty set of characters.
	 A string S is a P subsequence of w iff S is a substring of w and S is composed entirely of characters in P. For example 1, 0, 10, 01, 11, 011, 101, 111, 1111, and 1011 are {0, 1} subsequences of 2312101121111.
13.12 (#18)	 Let S be the set of all P subsequences of w such that, for each element t of S, there is no P subsequence of w longer than t. In the example above, S = {1111, 1011}.
	• Then m is the leftmost (within w) element of S. In the example above, $m = 1011$.
	 a. Let L = {w ∈ {0-9}* : if y is the leftmost maximal {0, 1} subsequence of w then y is even}. Is L regular (but not context free), context free or neither? Prove your answer.
	b. Let $L = \{w \in \{a, b, c\}^*$: the leftmost maximal $\{a, b\}$ subsequence of w starts with a $\}$. Is L regular (but not context free), context free or neither? Prove your answer.

asked are quite different. **Both parts should have said**: "Is L context-Free (but not regular), regular, or neither? Prove your answer.