11.1, 2, 3
(\#1, 2, 3)
11.4
(\#4) (3)
11.6b
(\#5) (6)
11.6c
(\#6) (6)
11.6d
(\#7) (6)
11.6e (\#8)
(\#9) not
from book
11.6h
(\#10) (6)
11.6 i
(\#11) (6)
11.6k
(\#12) (6)
11.8b
(\#13) (6)
11.9 (\#14)

1. Let $\mathrm{Z}=\{\mathrm{a}, \mathrm{b}\}$. For the languages that are defined by each of the following grammars, do each of the following:
i. List five strings that are in $L$.
ii. List five strings that are not in $I$. (or as mumy as there are, whichever is greater).
iii. Describe $L$ concisely. You can ase regular expressions, expressions using variables (c.g., $\mathrm{a}^{\prime \prime} \mathrm{b}^{\prime \prime}$, or set theoretic expressions (e.g., $\{x=\ldots$.$) ).$
iv. Indicate whether or not $L$ is regular. Prove your answer.
a. $S \rightarrow a S|S b| a$
b. $S \rightarrow$ aSa $|\mathrm{bSb}| \mathrm{a} \mid \mathrm{b}$
c. $S \rightarrow$ as $\mid$ b $S \mid \varepsilon$
d. $S \rightarrow$ as $|a S b S|_{a}$
2. Let $G$ be the grammar of Example 11.12. Show a third parse tree that $G$ can produce for the string $(O) 0$.
3. Consider the following grammar $G$ :

$$
S \rightarrow 0 S 1|S S| 10
$$

Show a parse tree produced by $G$ for each of the following strings:
a. 010110 .
b. 00101101 .
4. Consider the following context free grammar $G$ : $S \rightarrow a S a$
$S \rightarrow T$
$S \rightarrow \varepsilon$
$T \rightarrow \mathrm{bT}$
$T \rightarrow \mathrm{c} T$
$T \rightarrow a$
One of these rules is redundant and could be remowed without altering $L(G)$. Which one?
6. Show a context-free grammar for each of the following languages $L$ :
a. BalDelim $=\{w$ : where $w$ is a string of delimiters: $(),,[],,\{$,$\} , that are$ properly balanced $\}$.
b. $\left\{\mathbf{a}^{\prime} \mathbf{b}^{\prime}: 2 i=3 j+1\right\}$.
c. $\left\{a^{\prime} b^{\prime}: 2 i \neq 3 j+1\right\}$.
d. $\left.\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(w)=2 \cdot \#_{\mathrm{b}}(w)\right\} \cdot\right\}$.
e. $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} ; w=w^{\mathrm{R}}\right\}$.
f. $\left\{\mathrm{a}^{\prime} \mathrm{b} / \mathrm{c}^{k}: i, j, k \geq 0\right.$ and $(i \neq j$ or $\left.j \neq k)\right\}$.
g. $\left\{\mathrm{a}^{\prime} \mathrm{b} \mathrm{c}^{k}: i, j, k \geq 0\right.$ and $(k \leq i$ or $\left.k \leq j)\right\}$.
h. $\left\{w \in\{a, b\}^{*}\right.$; every prefix of $w$ has at least as many a's as $b$ 's $\}$.
i. $\left\{\mathrm{a}^{n} \mathrm{~b}^{m}: m \geq n, m-n\right.$ is even $\}$.
j. $\left\{\mathrm{a}^{m} \mathrm{~b}^{n} \mathrm{c}^{p} \mathrm{~d}^{p}: m, n, p, q \geq 0\right.$ and $\left.m+n=p+q\right\}$.
k. $\left\{x \mathrm{c}^{n}: x \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$ and $\left(\#_{a}(x)=n\right.$ or $\left.\left.\#_{b}(x)=n\right)\right\}$.

1. $\left\{b_{i} \# b_{i+1}^{R}: b_{i}\right.$ is the binary representation of some integer $i, i \geq 0$, without leading zeros $\}$, (For example 101 . 011 e $L$..)
m. $\left\{x^{R} \| y: x, y \in\{0,1\}^{*}\right.$ and $x$ is a substring of $\left.y\right\}$.
2. (t-6) Show the details of the definition of a CFG that generates $\left\{\mathrm{a}^{i} \mathrm{~b} \mathrm{c}^{k}: i, j, k \geq 0\right.$ and $\left.(i+j=k)\right\}$
3. Consider the unambiguous expression grammar $G^{\prime}$ of Example 11.19.
a. Trace a derivation of the string $i d+i d^{*} i d^{*} i d$ in $G^{\prime}$.
b. Add exponentiation $\left(^{* *}\right.$ ) and unary minus $(-)$ to $G^{\prime}$, assigning the highest precedence to unary minus, followed by exponentiation, multiplication, and addition, in that order.
4. Let $L=\left\{w \in\left\{\mathrm{a}, \mathrm{b}, \cup, \varepsilon,(,),{ }^{*},^{+}\right\}^{*}: w\right.$ is a syntactically legal regular expression $\}$.
a. Write an unambiguous context-free grammar that generates $L$. Your grammar should have a structure similar to the arithmetic expression grammar $G^{\prime}$ that we presented in Example 11.19. It should create parse trees that:

- Associate left given operators of equal precedence, and
- Correspond to assigning the following precedence levels to the operators (from highest to lowest):
-     * and ${ }^{+}$
- concatenation
- U
b. Show the parse tree that your grammar will produce for the string $(\mathrm{a} \cup \mathrm{b}) \mathrm{ba}{ }^{*}$.

