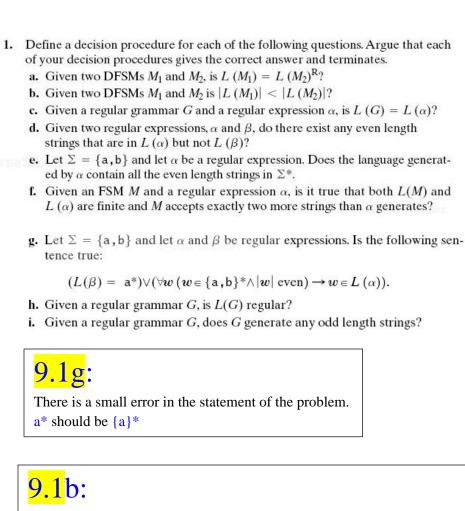
474 HW 09 problems (highlighted problems are the ones to turn in)

Г

8.8(#1)	
	7. Prove that the regular languages are closed under each of the following operations:
<mark>8.8 d, e</mark>	a. $pref(L) = \{w : \exists x \in \Sigma^*(wx \in L)\}.$
(#2) <mark>(3, 6)</mark>	b. $suff(L) = \{w : \exists x \in \Sigma^*(xw \in L)\}.$
	c. $reverse(L) = \{x \in \Sigma^* : x = w^{\mathbb{R}} \text{ for some } w \in L\}.$
	d. letter substitution (as defined in Section 8.3).
	8. Using the definitions of <i>maxstring</i> and <i>mix</i> given in Section 8.6, give a precise def-
<mark>8.9</mark>	inition of each of the following languages:
(#3) (<mark>9</mark>)	
	a. $maxstring(A^n B^n)$.
	b. $maxstring(a^i b^j c^k, 1 \le k \le j \le i).$
	c. maxstring(L_1L_2), where $L_1 = \{w \in \{a, b\}^* : w \text{ contains exactly one } a\}$ and
	$L_2 = \{\mathbf{a}\}.$
<mark>8.10a</mark>	d. $mix((aba)^*)$.
(#4) (9)	e. $mix(a*b*)$.
	9. Prove that the regular languages are not closed under mix. a DFSM M = (K, Σ , δ ,
	s, A) such that
	L(M)=L, construct a
<mark>8.16a</mark>	Definitions of <i>maxstring</i> and <i>mix</i> are on pages 181-182. DFSM
(#5) (<mark>9</mark>)	$M^* = (K^*, \Sigma, \Delta^*, s^*, A^*)$
	10. Recall that $maxstring(L) = \{w : w \in L \text{ and } \forall z \in \Sigma^* (z \neq \varepsilon \rightarrow wz \notin L)\}.$ such that
8.16b	a. Prove that the regular languages are closed under masstring. $L(M^*)$ =maxstring(L).
(#6)	b. If $maxstring(L)$ is regular, must L also be regular? Prove your answer.
8.21	16. Define two integers i and j to be <i>twin primes</i> \square iff both i and j are prime and $ i-2 $
(#7)	j-i = 2.
	a. Let $L = \{w \in \{1\}^* : w \text{ is the unary notation for a natural number } n \text{ such that there exists a pair } p \text{ and } q \text{ of twin primes, both } > n.\}$ Is L regular?
	b. Let $L = \{x, y : x is the decimal encoding of a positive integer i, y is the deci-$
	mal encoding of a positive integer j , and i and j are twin primes}. Is L regular?
	indicided and bosidive integer f, and valid fare (with printes). Is E regard,
	21. For each of the following claims, state whether it is True or False. Prove your
	answer.
	a. There are uncountably many non-regular languages over $\Sigma = \{a, b\}$.
	b. The union of an infinite number of regular languages must be regular.
<mark>8.21n</mark>	c. The union of an infinite number of regular languages is never regular.
(#8) (<mark>12</mark>)	d. If L_1 and L_2 are not regular languages, then $L_1 \cup L_2$ is not regular.
	e. If L_1 and L_2 are regular languages, then $L_1 \otimes L_2 = \{w : w \in (L_1 - L_2) \text{ or } w \in (L_2 - L_1)\}$ is regular.
<mark>8.210</mark>	f. If L_1 and L_2 are regular languages and $L_1 \subseteq L \subseteq L_2$, then L must be regular.
	g. The intersection of a regular language and a nonregular language must be
(#9) (<mark>3</mark>)	regular.
	h. The intersection of a regular language and a nonregular language must not be
	regular.
	i. The intersection of two nonregular languages must not be regular.
	j. The intersection of a finite number of nonregular languages must not be regular.
	k. The intersection of an infinite number of regular languages must be regular.
	I. It is possible that the concatenation of two nonregular languages is regular.
	m. It is possible that the union of a regular language and a nonregular language
	is regular.

- n. Every nonregular language can be described as the intersection of an infinite number of regular languages.
- o. If L is a language that is not regular, then L^* is not regular.



9.1 (#10)

(#11) (<mark>6</mark>)

(#12) (<mark>6</mark>)

<mark>9.1b</mark>

9.1d

9.1g See note

below

<mark>9.1i</mark>

(#13) (<mark>6</mark>)

(#14) (<mark>6</mark>)

Note that |L(M)| means "the number of elements in the language accepted by the machine M. Note that for some machines M, the language is countably infinite.