474 HW 08 problems (highlighted problems are the ones to turn in)

	1. For each of the following languages L , state whether L is regular or not and
9 loogalilatur	prove your answer:
8. Tacegriptuz	a. $\{a:b^{j}: i, j \ge 0 \text{ and } i + j = 5\}.$
(#1)	c. $\{a^{j}b^{j}: i, j \ge 0 \text{ and } i - j = 5\}$.
	d. $\{w \in \{0, 1, \#\}^* : w = x \# y, \text{ where } x, y \in \{0, 1\}^* \text{ and } x \cdot y \equiv 0\}.$
	e. $\{\mathbf{a}^i \mathbf{b}^j : 0 \le i < j < 2000\}.$
<mark>8.1 b</mark>	f. $\{w \in \{Y, N\}^* : w \text{ contains at least two Y's and at most two N's}\}.$
	g. $\{w = xy : x, y \in \{a, b\}^* \text{ and } x = y \text{ and } \#_a(x) \ge \#_a(y)\}.$
<mark>8.1d</mark>	h. $\{w = xyzy^{R}x : x, y, z \in \{a, b\}^*\}.$
	i. $\{w = xyzy : x, y, z \in \{0, 1\}^+\}$.
<mark>8.1h</mark>	j. $\{w \in \{0,1\}^* : \#_0(w) \neq \#_1(w)\}.$
-	k. $\{w \in \{a, b\}^* : w = w^*\}$.
<mark>8.1i</mark>	1. $\{w \in \{a, b\}^* : \exists x \in \{a, b\}^* \ (w = x x^* x)\}$.
0.4:	ber of occurrences of the substring ba $\}$.
<mark>8.1]</mark>	n. $\{w \in \{a, b\}^* : w \text{ contains exactly two more b's than a's}\}$.
<mark>8 1n</mark>	o. $\{w \in \{a, b\}^* : w = xyz, x = y = z , \text{ and } z = x \text{ with every a replaced by}$
<mark>0.111</mark>	b and every b replaced by a}. Example: abbbabbaa $\in L$, with $x =$
	abb, $y = bab$, and $z = baa$.
(#2 - #7)	p. $\{w : w \in \{a - z\}^* \text{ and the letters of } w \text{ appear in reverse alphabetical order}\}.$
<mark>3 pts. each</mark>	roi example, spoorreed e 2.
	q. $\{w: w \in \{a - z\}^* \text{ every letter in } w \text{ appears at least twice}\}$. For example,
	unprosperousness $\in L$.
	in a non-decreasing order without leading zeros.
	s. {w of the form: $\langle integer_1 \rangle + \langle integer_2 \rangle = \langle integer_3 \rangle$, where each of the
	substrings $\langle integer_1 \rangle$, $\langle integer_2 \rangle$, and $\langle integer_3 \rangle$ is an element of $\{0 -$
	9}* and <i>integer</i> ₃ is the sum of <i>integer</i> ₁ and <i>integer</i> ₂ }. For example,
	$124+5=129 \in L.$
	t. L_0^* , where $L_0 = \{ba, b'a, j \ge 0, 0 \le i \le k\}$.
	a. $\{w \cdot w \text{ is the encoding of a date that occurs in a year that is a prime number }. A date will be encoded as a string of the form mm/dd/yyyy, where each m.$
	and y is drawn from $\{0-9\}$.
	v. $\{w \in \{1\}^* : w \text{ is, for some } n \ge 1, \text{ the unary encoding of } 10^n\}$. (So $L =$
	$\{1111111111, 1^{100}, 1^{1000}, \dots\}.)$
	6. Prove by construction that the regular languages are closed under:
	a. intersection.
	b. set difference.
	7. Prove that the regular languages are closed under each of the following operations: f(I) = (I + I)
0.7-	a. $pref(L) = \{w : \exists x \in \Sigma^*(wx \in L)\}.$ b. $guff(L) = \{w : \exists x \in \Sigma^*(wx \in L)\}.$
<mark>8.7a</mark>	b. $suff(L) = \{w, \exists x \in \mathbb{Z}^* : x \in L\}$
(#8) <mark>9</mark>	d. letter substitution (as defined in Section 8.3).
	8.7a Do this by construction, i.e., produce an algorithm that takes as input a DFSM
	$ $ M = (K, Σ , δ , s, A) that accepts L, and produces a DFSM M' = (K', Σ' , δ' , s', A') that accepts
	pref(L). Describe how to get from M to M'
	Hint . M' will have a lot of its elements in common with M but it takes a somewhat
	complex calculation (based on M) to determine avactly what has to be changed
	complex calculation (based on wi) to determine exactly what has to be changed.
	On the main HW8 assignment document, I posted the author's solutions to the other
	three parts of problem 8.7, so that you will have more examples
	and put to or problem or, so that you will have more examples.

8 2 2 5	
(#0)	2. For each of the following languages L , state whether L is regular or not and prove
(#9)	your answer:
	a. $\{w \in \{a, b, c\}^* : \text{ in each prefix } x \text{ of } w, \#_a(x) = \#_b(x) = \#_c(x)\}\}$. b. $\{w \in \{a, b, c\}^* : \exists \text{ some prefix } x \text{ of } w (\#_b(x) = \#_b(x) = \#_b(x))\}$.
	c. $\{w \in \{a, b, c\}^* : \exists \text{ some prefix } x \text{ of } w (x \neq \epsilon \text{ and } \#_{b}(x) = \#_{c}(x))\}$.
00	3. Define the following two languages:
0.5	$L_a = \{w \in \{a, b\}^* : \text{ in each prefix } x \text{ of } w, \#_a(x) \ge \#_b(x)\}.$
(#10)	$L_{\rm b} = \{w \in \{a, b\}^* : \text{ in each prefix } x \text{ of } w, \#_{\rm b}(x) \ge \#_{\rm a}(x)\}.$
	a. Let $L_{1} = L_{0} \cap L_{0}$. Is L_{1} regular? Prove your answer.
	b. Let $L_2 = L_3 \cup L_b$. Is L_2 regular? Prove your answer.
<mark>8.4a</mark>	
(#11) 6	4. For each of the following languages L, state whether L is regular or not and prove
(=)	your answer:
8.4b	a. $\{uww^*v: u, v, w \in \{a, b\}^+\}$.
(#12)	D. $\{xyzy \ x : x, y, z \in \{a, b\}\}$.
("==)	7 Prove that the regular languages are closed under each of the following operations:
8.7	a $pref(I) = \{av: \exists v \in S^*(avv \in I)\}$
(#13)	a. $pref(L) = \{w: \exists x \in \Sigma \ (wx \in L)\}.$ b. $suff(L) = \{w: \exists x \in \Sigma^*(xw \in L)\}$
("13)	b. suff $(L) = \{w \in \Sigma : x \in Z \mid (xw \in L)\}$.
	d letter substitution (as defined in Section 8.3)
	8. Using the definitions of <i>marstring</i> and <i>mix</i> given in Section 8.6 give a precise def-
	inition of each of the following languages:
	$- \cdots - (A^n D^n)$
	a. maxstring(A B).
	b. maxstring (a' b' c'', $1 \le k \le j \le i$).
	c. maxstring(L_1L_2), where $L_1 = \{w \in \{a, b\}^* : w \text{ contains exactly one } a\}$ and
	$L_2 = \{\mathbf{a}\}.$
	d. $mix((aba)^*)$.
	e. $mix(a*b*)$.
	9. Prove that the regular languages are not closed under <i>mix</i> .