

1. Describe in English, as briefly as possible, the language defined by each of these regular expressions:
a. $(b \cup b a)(b \cup a)^{*}(a b \cup b)$.
b. $\left(\left(\left(a^{*} b^{*}\right)^{*} a b\right) \cup\left(\left(a^{*} b^{*}\right)^{*} b a\right)\right)(b \cup a)^{*}$.
2. Write a regular expressions to describe each of the following languages:
a. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}:\right.$: every a in w is immediately preceded and followed by b$\}$.
b. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ does not end in ba$\}$.
c. $\left\{w \in\{0,1\}^{*}: \exists y \in\{0,1\}^{*}(|x y|\right.$ is even $\left.)\right\}$.
d. $\left\{w \in\{0,1\}^{*}: w\right.$ corresponds to the binary encoding, without leading 0 s, of natural numbers that are evenly divisible by 4$\}$.
e. $\left\{w \in\{0,1\}^{*}: w\right.$ corresponds to the binary encoding, without leading 0 s, of natural numbers that are powers of 4$\}$.
f. $\left\{w \in\{0-9\}^{*}: w\right.$ corresponds to the decimal encoding, without leading 0 s , of an odd natural number $\}$.
g. $\left\{w \in\{0,1\}^{*}: w\right.$ has 001 as a substring $\}$.
h. $\left\{w \in\{0,1\}^{*}: w\right.$ does not have 001 as a substring $\}$.
i. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ has bba as a substring $\}$.
j. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ has both aa and bb as substrings $\}$.
k. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ has both aa and aba as substrings $\}$.
3. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ contains at least two b 's that are not followed by an a$\}$.
m. $\left\{w \in\{0,1\}^{*}: w\right.$ has at most one pair of consecutive 0 s and at most one pair of consecutive 1 s$\}$.
n. $\left\{\boldsymbol{w} \in\{0,1\}^{*}:\right.$ none of the prefixes of w ends in 0$\}$.
o. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(w) \equiv_{3} 0\right\}$.
p. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(\boldsymbol{w}) \leq 3\right\}$.
q. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: \boldsymbol{w}\right.$ contains exactly two occurrences of the substring aa $\}$.
r. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ contains no more than two occurrences of the substring aa\}.
s. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}-L\right\}$, where $L=\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ contains bba as a substring $\}$.
t. $\left\{\boldsymbol{w} \in\{0,1\}^{*}:\right.$ every odd length string in L begins with 11$\}$.
u. $\left\{\boldsymbol{w} \in\{0-9\}^{*}: w\right.$ represents the decimal encoding of an odd natural number without leading 0s.
v. $L_{1}-L_{2}$, where $L_{1}=\mathrm{a} * \mathrm{~b} * \mathrm{c}^{*}$ and $L_{2}=\mathrm{c} * \mathrm{~b} * \mathrm{a} *$.
w. The set of legal United States zip codes $\boldsymbol{\square}$.
\mathbf{x}. The set of strings that correspond to domestic telephone numbers in your country.
4. Simplify each of the following regular expressions:
a. $(\mathrm{a} \cup \mathrm{b})^{*}(\mathrm{a} \cup \varepsilon) \mathrm{b}^{*}$.
b. $\left(\varnothing^{*} \cup\right.$ b) b^{*}.
c. $(\mathrm{a} \cup \mathrm{b}) * \mathrm{a}^{*} \cup \mathrm{~b}$.
d. $\left((\mathrm{a} \cup \mathrm{b})^{*}\right)^{*}$.
e. $\left((\mathrm{a} \cup \mathrm{b})^{+}\right)^{*}$.
f. $a((a \cup b)(b \cup a))^{*} \cup a((a \cup b) a)^{*} \cup a((b \cup a) b)^{*}$.
5. For each of the following expressions E, answer the following three questions and prove your answer:
i. Is E a regular expression?
ii. If E is a regular expression, give a simpler regular expression.
iii. Does E describe a regular language?
a. $((a \cup b) \cup(a b))^{*}$.
b. $\left(\mathrm{a}^{+} \mathrm{a}^{n} \mathrm{~b}^{n}\right)$.
c. $((a b) * \varnothing)$.
d. $\left(((a b) \cup c)^{*} \cap\left(b \cup c^{*}\right)\right)$.
e. $\left(\varnothing^{*} \cup\left(b b^{*}\right)\right)$.
6.5

10(6-6)
5. Let $L=\left\{\mathrm{a}^{n} \mathrm{~b}^{n}: 0 \leq n \leq 4\right\}$.
a. Show a regular expression for L.
b. Show an FSM that accepts L.

