Class 31

MAXIMUM BIPARTITE MATCHING

Exam 3

Time: Monday, February 6, 7-8:30pm

Location:

- Crapo G219, section 1
- Crapo G220, section 2
- Crapo G221, section 3
- Crapo G222, section 4

Covers material from January 13 - 27: Chapters 8 and 9

You may use a 1-page cheat sheet during the exam

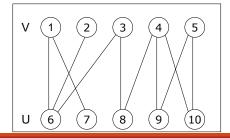
No class Tuesday, February 7, to compensate for evening exam

Pairing Elements

Sometimes, it is important to match up elements of two sets.

We will use a graph to represent the elements of the two sets,

Edges are used to indicate which elements among the two sets can be matched.

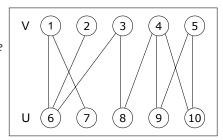


Bipartite Graphs

In a *bipartite graph*, vertices can be partitioned into two disjoint sets U and V, not necessarily of the same size, so that every edge has one end in U and the other end in V.

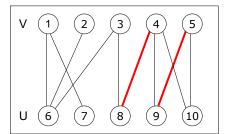
For a graph G, the following are equivalent:

- G is bipartite
- G has no odd-length cycle
- The vertices of G are 2-colorable



Matching in a Graph

- A *matching* in a graph is a subset of its edges with the property that no two edges share a vertex.
- In a matching M, a vertex is either matched or free



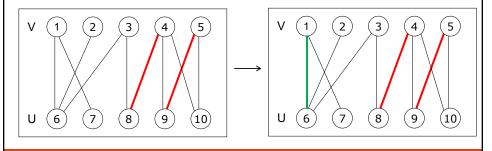
example matching: $M = \{(4,8), (5,9)\}$ Vertices 4, 5, 8 and 9 Are matched. Vertices 1, 2, 3, 6, 7 and 10 are free.

Improving a Matching

A *maximum* (or *maximum cardinality*) matching is a matching with the largest number of edges.

Always exists, not necessarily unique.

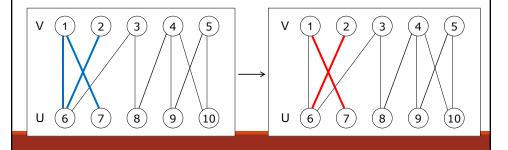
One option: add an edge between a free vertex in U to a free vertex in V



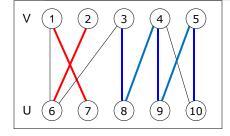
Augmenting Paths

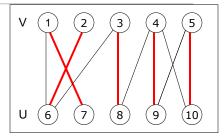
Augmenting path for matching M: path from free vertex to free vertex whose edges alternate: not in M, in M, etc.

- The length of an augmenting path is always odd.
- $\circ\,$ Remove every edge appearing in an even numbered position.



Augmentation Continued





Now a perfect matching (all vertices matched), a maximum.

• Note: a perfect matching requires |V| = |U| and doesn't necessarily exist

Method for Constructing Augmenting Path

Start with some initial matching

• e.g., the empty set

Find an augmenting path and augment the current matching along that path

e.g., using breadth-first search like method

When no augmenting path can be found, terminate and return the last matching, which is maximum

- Follows from: Berge's Lemma. A matching M is maximum if and only if there exists no augmenting path with respect to M.
- We'll prove this.

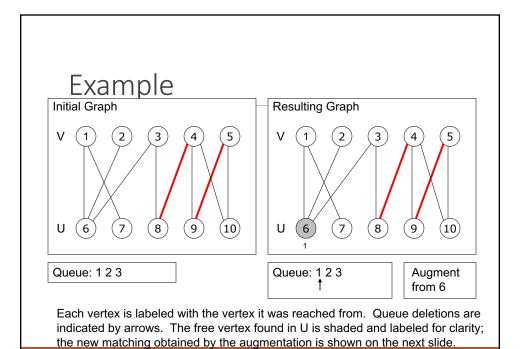
BFS-based Augmenting Path Algorithm

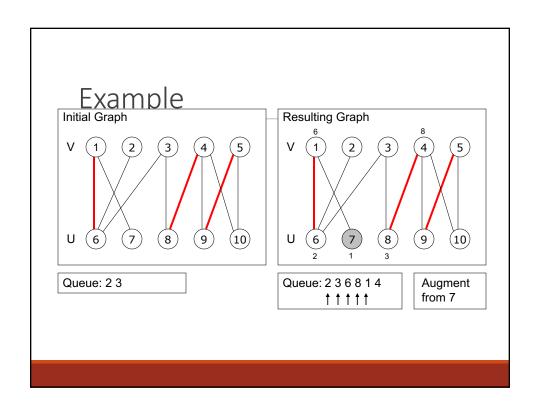
Initialize queue Q with all free vertices in one of the sets (say V)

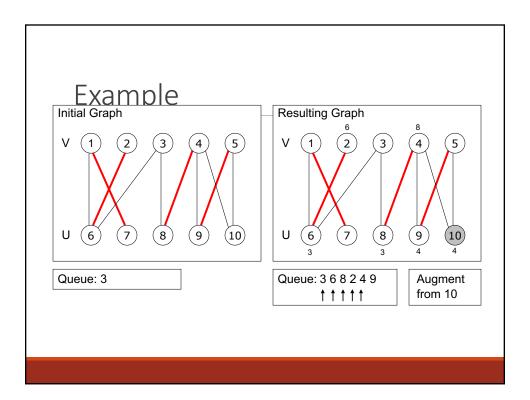
While Q is not empty: dequeue w from Q.

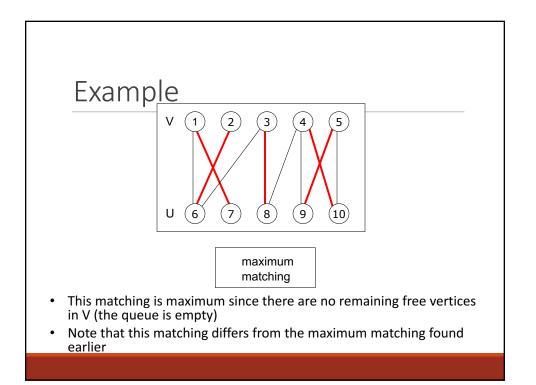
- Case 1: w is in V. For each unlabeled neighbor u:
 - If u is free, augment the matching along the path ending at u by following labels backward until a free vertex in V is reached.
 Erase all labels and reinitialize Q with all the vertices in V that are still free
 - If u is matched (not with w), label u with w and enqueue u
- Case 2 (w is in U) Label its matching mate v with w and enqueue v

When Q becomes empty, return the last matching, which is maximum









Notes on Maximum Matching Algorithm

The number of iterations cannot exceed $\lfloor n/2 \rfloor + 1$, where n = #vertices. (Why?)

Time spent on each iteration is in O(n+m) where m = #edges. Hence, the time efficiency is in O(n(n+m))

This can be improved to $O(\sqrt{n}(n+m))$ by combining multiple iterations to maximize the number of edges added to matching M in each search

Finding a maximum matching in an arbitrary graph is more difficult...