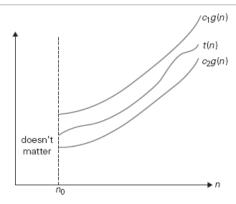
## Day 11

DIVIDE AND CONQUER CLOSEST PAIR

# Review of big-oh, big-omega and big-theta



**FIGURE 2.3** Big-theta notation:  $t(n) \in \Theta(g(n))$ .

# Review of big-oh, big-omega and big-theta

Big-O (O):

 $T(n) \le cg(n)$  for all  $n \ge n_0$ 

Big-Omega ( $\Omega$ ):

 $T(n) \le cg(n)$  for all  $n \ge n_0$ 

doesn't matter

**FIGURE 2.3** Big-theta notation:  $t(n) \in \Theta(g(n))$ .

Big-Theta  $(\Theta)$ :

 $c_1g(n) \le T(n) \le c_2g(n)$  for all  $n >= n_0$ 

Example: Show  $\frac{1}{2}n(n-1)$  is  $\Theta(n^2)$ 

# Divide and conquer problem of size n subproblem 1 of size n/2 of size n/2 of size n/2 solution to subproblem 2 solution to the original problem FIGURE 5.1 Divide-and-conquer technique (typical case).

### Divide and conquer

Why is *quicksort* a divide and conquer algorithm?

Why is mergesort a divide and conquer algorithm?

### Closest-Pair Problem

Find the two closest points in a set of *n* points.

### Example applications:

- Film/music recommendations
- Air traffic control
- Clustering in general

### Closest-Pair Problem

• Brute-force algorithm (2D case)

### **ALGORITHM** BruteForceClosestPair(P)

```
//Finds distance between two closest points in the plane by brute force //Input: A list P of n (n \ge 2) points p_1(x_1, y_1), \ldots, p_n(x_n, y_n) //Output: The distance between the closest pair of points d \leftarrow \infty
```

for 
$$i \leftarrow 1$$
 to  $n-1$  do

for  $j \leftarrow i+1$  to  $n$  do

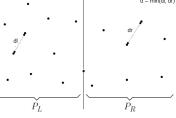
 $d \leftarrow \min(d, sqrt((x_i - x_j)^2 + (y_i - y_j)^2)) // sqrt$  is square root return  $d$ 

- What to count?
- Can you think of an optimization to the algorithm?

### Divide-and-Conquer Closest Pair



- 2. Then sort by y-coordinate
- 3. Let *m* be the median of x-coordinates
- 4. Let  $P_L$  be the points to the left side of m, including m
- 5. Let  $P_R$  by the points to the right side of m
- 6. Recursively find the closest pair among  $P_L$  and  $P_R$
- 7. Let  $d_L$  be the minimum in  $P_L$
- 8. Let  $d_R$  be the minimum in  $P_R$
- 9. Let d be the minimum of  $d_L$  and  $d_R$



### Divide-and-Conquer Closest Pair .

 $P_L$ 

Not quite done.

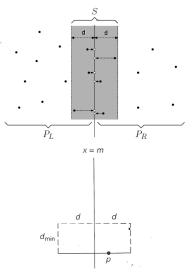
Need to look for potentially shorter pairs between  $P_L$  and  $P_R$ 

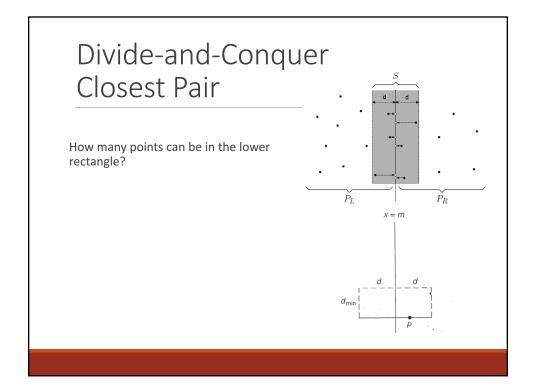
We only need to consider a strip S centered on m.

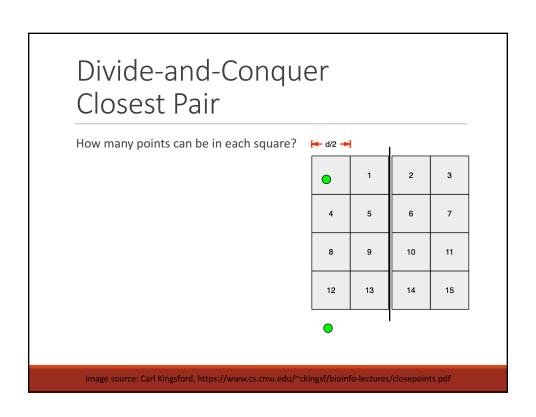
The width of *S* is 2*d*.

### Divide-and-Conquer Closest Pair

To further improve efficiency, for each point in *S*, we only need to consider points that are at most *d* away on the y-axis.







### Divide-and-Conquer Closest Pair Runtime

```
Sorting: 2*n \log(n)

Splitting: n

T(n) = 2 T(n/2) + f(n)

Master theorem: a = 2, b = 2, f(n) = n^1, i.e. d = 1

a = b^d

T(n) = \Theta(n^d \log n), i.e. \Theta(n \log n)
```