
2/17/2017

1

Continued from yesterday

>java RealQueen 5
SOLUTION: 1 3 5 2 4
SOLUTION: 1 4 2 5 3
SOLUTION: 2 4 1 3 5
SOLUTION: 2 5 3 1 4
SOLUTION: 3 1 4 2 5
SOLUTION: 3 5 2 4 1
SOLUTION: 4 1 3 5 2
SOLUTION: 4 2 5 3 1
SOLUTION: 5 2 4 1 3
SOLUTION: 5 3 1 4 2

Check out Queens from SVN

2/17/2017

2

 Board configuration represented by a linked
list of Queen objects

Fields of RealQueen:

column

row

neighbor

Designed by Timothy Budd
http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/slides/chap06/java.htm

2/17/2017

3

 findFirst()
 findNext()
 canAttack(int row, int col)

 Already Implemented by NullQueen
(does this implementation make sense to you?)

Your job (15 points extra credit if you do it before the
end of class):

Understand the job of each of these methods.
Javadoc from the Queen interface can help

Fill in the (recursive) details in the RealQueen class
Debug
Submit to dropbox on Moodle by the end of your
class period.

More details on next slides

 For 15 extra-credit HW points, submit a solution
by the end of your class period today.

 Submit a ZIP file that contains all of the Java
source files.

 If you work with a partner, one of you should
submit it; include both of your usernames in the
name of your ZIP file.

 See the next slides for algorithm details.

2/17/2017

4

 Each queen sends messages directly to its
immediate neighbor to the left (and
recursively to all of its left neighbors)

 Return value provides information concerning
all of the left neighbors:

 Example: neighbor.canAttack(currentRow, col)
◦ Message goes to the immediate neighbor, but the

real question to be answered by this call is
◦ "Hey, neighbors, can any of you attack me if I place

myself on this square of the board?"

1. Queen asks its neighbors to find the first position
in which none of them attack each other
◦ Found? Then queen tries to position itself so that it

cannot be attacked.
2. If the rightmost queen is successful, then a

solution has been found! The queens cooperate
in recording it.

3. Otherwise, the queen asks its neighbors to find
the next position in which they do not attack
each other

4. When the queens get to the point where there is
no next non-attacking position, all solutions
have been found and the algorithm terminates

And recursion does its magic!

