Figure 8.9: Example « kip li

CSSE 230 Day 25

Skip Lists

Reminders/Announcements

2/16/2017

2/16/2017

Skip Lists

An alternative to balanced trees

Sorted data.
Random.
Expected times are O(log n).

An alternative to balanced trees

» Indexed lists

> One-level index.
2nd-level index.
3rd-level index
log-n-level index.

o o o

Remember the problem

. i i with keeping trees
» Problem: insertion and deletion. completely balanced™?

» Solution: Randomized node height: Skip lists.
> Pugh, 1990 CACM.

» https://people.ok.ubc.ca/ylucet/DS/SkipList.html

A Note that we can iterate through the list easily
and in increasing order, like a threaded BST”

A slightly different skip list
representation

» Uses a bit more space, makes the code
simpler.
» Michael Goodrich and Roberto Tamassia.

Figure 8.9: Example of a skip list.

Methods in SkipListNode class

after(p): Return the position following p on the same level.

before(p): Return the position preceding p on the same level.

below(p): Return the position below p in the same tower.

above(p): Return the position above p in the same tower.

2/16/2017

Search algorithm

|. 1f S.below(p) is null, then the search terminates—we are af the bottom and
have located the largest item in § with key less than or equal to the search
key k. Otherwise, we drop down 1o the next lower level in the present tower
by setting p — S.below(p).

2. Starting at position p. we move p forward until it is at the right-most position
on the present level such that key(p) < k. We call this the scan forward step.
Note that such a position always exists, since each level contains the special
keys -+o¢ and —oc. In fact, after we perform the scan forward for this level.
p may remain where it started. In any case. we then repeat the previous step.

Figure 8.10: Example of a search in a skip list. The positions visited when searching
for key 50 are highlighted in blue.

Insertion diagram

2/16/2017

2/16/2017

Insertion algorithm

Algorithm Skiplnsert{k.¢):
Input: Ttem (k. ¢)
Output: None

p — SkipSearch(k)
¢ « insertAfterAbove(p.null. (k. ¢))
while random() < | /2 do
while above(p) = null do
p + before(p) {scan backward)
p — above(p) {jump up to higher level |
g « insertAfterAbove(p.g. (k.e))

{we are w the bottom level }

{insert new item

Code Fragment 8.5: [nserlion in a skip list, assuming random() returns a random
number between 0 and 1. and we never insert past the op level

Remove algorithm

(sort of) Analysis of Skip Lists

» No guarantees that we won't get O(N)

behavior.

> The interaction of the random number generator
and the order in which things are inserted/deleted
could lead to a long chain of nodes with the same
height.

> But this is very unlikely.

- Expected time for search, insert, and remove are
O(log n).

Questions

. IRONICALLY, THE PIG
=/ ... HAS APULLED ;

~g" R —~ CALF MUSCLE -

AND THE cow

, {
: HAS A ¢

‘@ STRAINED |
g HAMSTRING.

"-;&
)Y e mm— .I-M-»-.. 3—'1

2/16/2017

Exhaustive Search and
Backtracking

> A taste of artificial intelligence

Eﬁhﬁ'ﬂ%ﬁgésstéﬁpe ible solutions to a
problem

The “search space”

» Goal: Find all solutions (or an optimal
solution) from that set

» Questions we ask:
- How do we represent the possible solutions?
- How do we organize the search?

> Can we avoid checking some obvious non-
solutions?

AOp
» Examples: ﬂEﬁﬁ :HJ 7
S IR

UL | 1—

AL

S M NS N

Mazes The “15” puzzle

2/16/2017

2/16/2017

In backtracking, we always try to extend a
partial solution
dead end
? =
— dead end
/ /dead end
/ ?
Start——» 7 ——>? & oo
http://www.cis.upenn.ed \ dead end
u/~matuszek/cit594- A//v
2004 /Lectures/38- \
backtracking.ppt success!

Note: the search is a tree and we
explore it using a pre-order traversal

In backtracking, we always try to extend a
partial solution

2/16/2017

The non-attacking chess queens
problem is a famous example

> In how many ways can N chess queens
be placed on an NxN grid, so that none
of the queens can attack any other
queen?

- |l.e. there are not two queens on the
same row, same column, or same
diagonal.

» There is no "formula"

for generating a solution. 4 iﬁi“ﬁa
gl = Ny

» The famous computer scientist Niklaus l-H-E-0 [
Wirth described his approach to the] H-S-B BE
problem in 1971: Program Developmentby ¢« [# 7 [«
Stepwise Refinement] ol K
http://sunnyday.mit.edu/16.355 /wirth- 2 B L
refinement.html#3 -l ¥ H-B

a b ¢ d « f g h
Possible moves of the queen are shown

http://en.wikipedia.org/wiki/Queen_(chess)

With a partner, discuss "possible
solution” search strategies

» In how many ways can N chess queens be
placed on an NxN grid, so that none of the
queens can attack any other queen?

> l.e. no two queens on the same row, same column,
or same diagonal.

Two minutes
No Peeking!

Search Space Possibilities 1/5

» Very naive approach. Perhaps stupid is a better
word!
There are N queens, N2 squares.

» For each queen, try every possible square,
allowing the possibility of multiple queens in the
same square.

> Represent each potential solution as an N-item array of
pairs of integers (a row and a column for each queen).

> Generate all such arrays (you should be able to write
code that would do this) and check to see which ones are
solutions.

> Number of possibilities to try in the NxN case:

> Specific number for N=8:

281,474,976,710,656

Search Space Possibilities 2/5

Slight improvement. There are N queens, N2
squares. For each queen, try every possible
square, notice that we can't have multiple
gueens on the same square.

- Represent each potential solution as an N-item
array of pairs of integers (a row and a column for
each queen).

- Generate all such arrays and check to see which
ones are solutions.

> Number of possibilities to try in NxN case:

- Specific number for N=8:

178,462,987,637,760
(vs. 281,474,976,710,656)

2/16/2017

10

Search Space Possibilities 3/5

» Slightly better approach. There are N queens, N
columns. If two queens are in the same column, they
will attack each other. Thus there must be exactly one
queen per column.

» Represent a potential solution as an N-item array of
integers.
> Each array position represents the queen in one column.

> The number stored in an array position represents the row of
that column's queen.

> Show array for 4x4 solution.

- Generate all such arrays and check to see which ones are
solutions.

+ Number of possibilities to try in NxN case:
Specific number for N=8:
16,777,216

Search Space Possibilities 4/5

» Still better approach There must also be
exactly one queen per row.

» Represent the data just as before, but notice
that the data in the array is a set!

- Generate each of these and check to see which ones
are solutions.

- How to generate? A good thing to think about.

- Number of possibilities to try in NxN case:

- Specific number for N=8:

40,320

2/16/2017

11

Search Space Possibilities 5/5

» Backtracking solution

» Instead of generating all permutations of N
gueens and checking to see if each is a
solution, we generate "partial placements" by
placing one queen at a time on the board

» Once we have successfully placed k<N
queens, we try to extend the partial solution
by placing a queen in the next column.

» When we extend to N queens, we have a
solution.

Experimenting with 8 x 8 Case

» Play the game:

» See the solutions:

(if you can figure out how to enable Java in your
browser)

2/16/2017

12

Program output:

>java RealQueen 5
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:
SOLUTION:

P

VIV P WWNN
WINNEHEUEHEVIPAPDW
HPAUWNPDPWENUV
PHEEWULANEHWUIN

NWENERHRVIA,VTIWD

Tommorrow:

We'll look at details
of the algorithm.

Bring your
computer, capabl;e
of compiling and
running Java
programs.

2/16/2017

13

