MA/CSSE 473
Day 28 ® o

e ' O

Hashing review
B-tree overview

Dynamic
Programming

MA/CSSE 473 Day 28

Assignment Old due date New due date
10 Tuesday, Oct 19 Wednesday, Oct 20

Convex Hull Thursday, Oct 21 Friday, Oct 22
11 Saturday, Oct 23 Tuesday, Oct 26
12 Tuesday, Oct 26 Thursday, Oct 28
13 Thursday, Oct 28 Wednesday, Nov 3

Convex Hull Late Day until Saturday at 8 AM

HW 11 is a good one to try to earn an extra late
day. Itis shorter than most assignments.

e Take-home exam available by Oct 29 (Friday) at
9:55 AM, due Nov 1 (Monday) at 8 AM.

Student Questions
Hashing summary

Convo schedule
Monday: ~ e

B-Trees —a quick look Section 1: 9:35 AM ==
Dynamic Programming Section 2: 10:20 AM v

Take-Home Exam

Available no later than 9:55 AM on Friday October 29.
Due 8 AM Monday, Nov 2
Two parts, each with a time limit of 3-4 hours

— exact limit will be set after | finish writing questions.

— Measured from time of ANGEL view of problems to

submission back to ANGEL drop box.
Covers through HW 12 and Section 8.2.
A small number of problems (3-5 in each part)

For most problems, partial credit for good ideas, even if
you don't entirely get it.

A blackout on communicating with other students about
this course during the entire period from exam availability
to exam due time. ° o

Some Hashing Details

The next slides are from CSSE 230.

They are here in case you didn't "get it" the
first time.

We will not go over all of them in detail in
class.

If you don't understand the effect of
clustering, you might find the animation that is
linked from the slides especially helpful.

Collision Resolution: Linear Probing

e When an item hashes to a table location
occupied by a non-equal item, simply use the
next available space.

e Try H+1, H+2, H+3, ...

— With wraparound at the end of the array

e Problem: Clustering (picture on next slide)

) . hash (89, 10) =9
Weiss Figure hash (18, 10) = 8
hash (49, 10) = 9
2.0'4 . hash (58, 10) = 8
Linear probing hash _
hash (9, 10) =9
table after each
insertion After insert 89 After insert 18 After insert 49 After insert 58 After insert 9
0 49 49 49
1 58 58
2 9
3
Animation: 4
http://www.cs.auckland. 5
ac.nz/software/AlgAnim
/hash _tables.html 6
7
8 18 18 18 18
9 89 89 89 89 89

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley m

Analysis of linear probing

e Dependent on the load factor, A, which is the ratio of the number of items
in the table to the size of the table. Thus0 <A <1.

e Foragiven A, what is the expected number of probes before an empty
location is found?

e For simplicity, assume that all locations are equally likely to be occupied,
and equally likely to be the next one we look at. Then the probability that a
given cell is empty is 1 - A, and thus the expected number of probes before
finding an empty cell is (write it as a summation).

> simplify({sum(i*(1l-lambda)*lambda”(i-1), i=1..infinity}},

Analysis of linear probing (continued)

e The "equally likely" probability is not realistic, because of
clustering

¢ Large blocks of consecutive occupied cells are formed. Any
attempt to place a new item in any of those cells results in
extending the cluster by at least one item

e Thus items collide not only because of identical hash values,
but also because of hash values that happen to put them
into the cluster

e Average number of probes when A is large:
— 05[1+1/(1-2)2].

e For a proof, see Knuth, The Art of Computer Programming, Vol 3: Searching
Sorting, 2"d ed, Addision-Wesley, Reading, MA, 1998. o
.‘ .

— What are the values for A =0, 0.5, 0.75, 0.9? -

— When A approaches 1, this gets bad! R
— Butif A is close to zero, then the average is near 1.0

So why consider linear probing?

e Easy toimplement

Simple code has fast run time per probe

Works well when load factor is low

— It could be more efficient just to rehash using a bigger table once it
starts to fill.

— What is often done in practice: rehash to an array that is double in
size once the load factor reaches 0.5

What about other fast, easy-to-implement strategies?

Quadratic probing

e With linear probing, if there is a collision at H,
we try H, H+1, H+2, H+3,... until we find an
empty spot.

— Causes (primary) clustering

e With quadratic probing, we try H, H+12. H+2?2,

H+32,...

— Eliminates primary clustering, but can cause
secondary clustering.

1b

Hints for quadratic probing

e Choose a prime number for the array size

— If the array used for the table is not more than half full,
finding a place to do the insertion is guaranteed, and no
cell is probed twice

— Suppose the array size is p, a prime number greater than 3
— Show by contradiction that if i and j are < |p/2], and i#j,
then H +i2 # H + j2 (mod p).
e Use an algebraic trick to calculate next index

— Replaces mod and general multiplication with subtraction
and a bit shift

— Difference between successive probes:
® a
e H+ (i+1)2= H +i% + (2i+1) [can use bit-shift for the multiplication]..= _« o

e nextProbe = nextProbe + (2i+1); =il
if (nextProbe >=P) nextProbe -=P; '2

Quadratic probing analysis

* No one has been able to analyze it

e Experimental data shows that it works well

— Provided that the array size is prime, and is the
table is less than half full

Other approaches to collision resolution

e Double hashing
— A second hash function is used to calculate an offset d
to use in probing. Try locations h+d, h+2d, h+3d, etc
e Separate chaining

— Rather than an array of items, we use an array of
linked lists. When multiple items hash to the same
location, we add them to the list for that location

— Picture on next slide

— No clustering effect

e But we use space for the links(that space could have been
used to make the array larger). . :

e If many items have the same hash code, the chains ~
can become long. e

Hashing with Chaining

mélém}[HWﬂ
ozl
Al
=

Analysis: Hashing with Chaining

e With chaining, the load factor may be > 1.

e Assume a hash function that distributes keys
evenly in the table. If there are n keys in the table
(backed by an array of size m), the average chain
should be A elements long

* So it takes constant time to compute the hash
function plus A /2 to search within the chain.

e [f A =1, thisis VERY fast

e But there is the extra space for the pointers,
which could have been used to make the table
larger if open addressing was used

B-trees
e We will do a quick overview here.

e For the whole scoop on B-trees (Actually B+
trees), take CSSE 433, Advanced Databases.

e Nodes can contain multiple keys and pointers
to other to subtrees

B-tree nodes

e Each node can represent a block of disk storage;
pointers are disk addresses

e This way, when we look up a node (requiring a disk
access), we can get a lot more information than if we
used a binary tree

* In an n-node of a B-tree, there are n pointers to
subtrees, and thus n-1 keys

e Allkeysin T, are 2K, and <K,
K, is the smallest key that appearsin T,

: ‘5‘1"(‘9‘ Pn-2| Kn-1| Pn

i

EIGURE 7.7 Parental node of 5 B-tree

B-tree nodes (tree of order m)

e All nodes have at most m-1 keys

e All keys and associated data are stored in special
leaf nodes (that thus need no child pointers)

* The other (parent) nodes are index nodes

¢ All index nodes except the root have between
' m/21and m children

e root has between 2 and m children

e All leaves are at the same level

e The space-time tradeoff is because of duplicating
some keys at multiple levels of the tree.

e Example on next slide . -

Example B-tree(order 4)

4,7,10] [11,14] 15,16, 19] | 20, 24] | 25,"28| [34, 38] |40, 43, 46] | 51, 55]|60, 68, 80|

FIGURE 7.8 Example of a B-tree of order 4

=
FIGURE 7.9 B-tree obtained after inserting 65 into the B-tree in Figure 7.8 v

B-tree Animation

e http://slady.net/java/bt/view.php?w=800&h=
600

€

10

Search for an item

Within each parent or leaf node, the items are
sorted, so we can use binary search (log m), which
is a constant with respect to n, the number of
items in the table

Thus the search time is proportional to the height
of the tree

Max height is approximately log; ., n

Exercise for you: Read and understand the
straightforward analysis on pages 273-274

Insert and delete are also proportional to height
of the tree

11

