MA/CSSE 473

Day 27 ® o
-

Dynamic >
Programming .. .-.
S

Binomial Coefficient

Warshall's algorithm

(Optimal BSTs)

Student questions?

Dynamic programming

e Used for problems with recursive solutions and
overlapping subproblems

e Typically, we save (memoize) solutions to the
subproblems, to avoid recomputing them.

e Previously seen example: Fib(n)

Dynamic Programming Example

e Binomial Coefficients:

e C(n, k) is the coefficient of x in the expansion of
(1+x)"

¢ C(n,0)=C(n, n)=1.

e [fO0<k<n,C(n, k)=C(n-1, k) + C(n-1, k-1)

e Can show by induction that the "usual" factorial

formula for C(n, k) follows from this recursive
definition.

— An upcoming homework problem.
e |f we don't cache values as we compute them, this

can take a lot of time, because of duplicate
(overlapping) computation. .y -

Computing a binomial coefficient

Binomial coefficients are coefficients of the binomial formula:

(a+b)"=C(n,0)a"b® + ...+ C(nk)a™*bk+ ...+ C(n,n)a®"

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) forn>k>0
C(n,0)=1, C(n,n)=1 forn=>0

Value of C(n,k) can be computed by filling in a table:

01 2... k1 k
0] 1
1 11
n-1 C(n-1,k-1) C(n-1,k) ® o
n C(n,k) _-':..f': ®

Computing C(n, k):
ALGORITHM Binomial(n. k)

/IComputes C(n. k) by the dynamic programming algorithm
//Input: A pair of nonnegative integers n > k > 0
//Output: The value of C(n, k)
fori < Otondo
for j < 0 to min(i, k) do
if j=0o0r;j=i
Cli, jl <1

else C[i, j]« Cli =1, j—=1]+C[i — 1, j]

return C|n, k]

Time efficiency: ©(nk)
Space efficiency: ©(nk)
If we are computing C(n, k) for many different n and fvf'?'

k values, we could cache the table between calls.

Elementary Dyn. Prog. problems

e These are in Section 8.1 of Levitin
e Simple and straightforward.

e | am going to have you read them on your
own.
— Coin-row
— Change-making
— Coin Collection

Transitive closure of a directed graph

We ask this question for a given directed graph G: for each of
vertices, (A,B), is there a path from Ato B in G?

Start with the boolean adjacency matrix A for the n-node
graph G. A[il[j]is 1 if and only if G has a directed edge from
node i to node j.

The transitive closure of G is the boolean matrix T such that
T[il[j]1 is 1 iff there is a nontrivial directed path from node i to
node j in G.

If we use boolean adjacency matrices, what does M?
represent? M3?

In boolean matrix multiplication, + stands for or, and * stands
for and (3)

o a b ¢ d b ¢
‘ 1 11
0 11

A= 0 T= 0 0

0 1 1

(a) (b) (©)

FIGURE 8.2 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.
v

Qo oo
- O O O
== -
o o = O
[T > T = 2 <)
-0 = =W
- O = =0

Transitive closure via multiplication

e Again, using + for or, we get
T=M+M?2 + M3+ ...
e Can we limit it to a finite operation?
e We can stop at M1,
— How do we know this?

e Number of numeric multiplications for solving
the whole problem?

Warshall's Algorithm for Transitive Closure

e Similar to binomial coefficients algorithm
Assume that the vertices have been numbered

Vi, Vo, ey Vp,

Graph represented by a boolean adjacency matrix M.
Numbering is arbitrary, but is fixed throughout the algorithm.
Define the boolean matrix R as follows:

— RM[i](j] is 1 iff there is a path from v; to v; in the directed graph

that has the formv,=w, - w; —

e s>=1, and

— w=V,, where

e forall t=1,..,5s-1, thew,isv, forsomem <k
i.e, none of the intermediate vertices are numbered higher than k

What is R(©)?

Note that the transitive closure T is R("

Rk example

e RKig is 1 iff there is a path in the directed

graph
V=W, > w; =
—s>1, and

—> W =V;, where

—forallt=2,..,s-1, the w,isv,,for some m <k

e Example: assuming that the node numbering is
in alphabetical order, calculate R(©, R, and R(?

6‘0) 0

o o oo
- O O O

b

1
0
0
0

c

- O O O

d

0
1
0
0

Quickly Calculating R

e Back to the matrix multiplication approach:

- Hl?w much time did it take to compute AX[i][j, once we have
Ak1?

e Can we do better when calculating RM[i][j] from R(k1)?
e How can R®[i][j] be 1?
— either R&1[i][j] is 1, or

— there is a path from v, to v, that uses no vertices numbered
higher than v, ;, and a similar path from v, to v;.

e Thus RM[i][j] is
R[] or (RV[i][k] and R&VIK][j])
¢ Note that this can be calculated in constant time if we
already have the three vales from the right-hand side.

e Time for calculating R® from Rk1)?

e Total time for Warshall's algorithm? >
Code and example on next slides v

ALGORITHM Warshall(A[1..n, 1..n])

/MMmplements Warshall’s algorithm for computing the transitive closure
/[Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
RO 4
fork < 1tondo
fori < 1tondo
for j < 1ton do
R®i, j1< R*V[, jlor (R*D[i, k] and R&=D[k, j])

return R
_ j k ~] k
RKk=-1 = (| 1 | * RK = 1
T
i 0 — |1 i 1 1

FIGURE 8.3 Rule for changing zeros in Warshall's algorithm

Ones reflect the existence of paths

with no intermediate vertices

(R0 s just the adjacency matrix);

boxed row and column are used for getting A1V,

Rith =

= O olo|n
o o =|o|o

Qo oo

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 1, i.e., just vertex a

(note a new path from dto b);

boxed row and column are used for getting A2,

1
-0 -e-l (=00 =O0 oD —'OOOD:|—'ODOQ:

Rill =

|-nOC)—-lD" (== =] B e
- o|lo|lo o

o o|=|lo .

ao oW

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 2,i.e., aand b

(note two new paths);

boxed row and column are used for getting A3,

Ri2l =

Qo oo
-] = -

|2

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 3,ie., a b, and ¢

(no new paths);

boxed row and column are used for getting R4,

Ri3 =

Qoo w

Ones reflect the existence of paths
with intermediate vertices numbered
not higher than 4, i.e., a, b, ¢, and d
(note five new paths).

Ri4) =

Qo oW

SO mar wloo=o <loo=o
SO =aa0 —ooon[-noooln
moaan |aloa o

.-
FIGURE 8.4 Application of Warshall's algorithm to the digraph shown. New ones are in v
bold.

Floyd's algorithm

All-pairs shortest path

A network is a graph whose edges are labeled by
(usually) non-negative numbers. We store those edge
numbers as the values in the adjacency matrix for the
graph

A shortest path from vertex u to vertex v is a path
whose edge sum is smallest.

Floyd's algorithm calculates the shortest path from u to
v for each pair (u, v) od vertices.

It is so much like Warshall's algorithm, that | am
confident you can quickly get the details from the
textbook after you understand Warshall's algorithm.

Dynamic Programming Example

OPTIMAL BINARY SEARCH TREES

Warmup: Optimal linked list order

e Suppose we have n distinct data items
X1, Xy, -y X, in @ linked list.

* Also suppose that we know the probabilities p,,
P, -, P, that each of these items is the item we'll
be searching for.

e Questions we'll attempt to answer:

— What is the expected number of probes before a
successful search completes?

— How can we minimize this number?
— What about an unsuccessful search?

Examples

p,=1/n for each i.
— What is the expected number of probes?
P =%,p,="%, .., P, =1/2", p, = 1/2"
— expected number of probes:

ISR n 1

it o =2 g <2

=2 2 2
What if the same items are placed into the list in
the opposite order?

N, 1 1
Z n+1-i + n-1 =N _1+ n-1
= 2 2 2
The next slide shows the evaluation of the Iast

two summations in Maple. -
— Good practice for you? prove them by induction '

Calculations for previous slide

> sum(i/2"i, i=1..n-1)+ n/2"(n-1);

1) "1) n
2l = n_’r|— 7
2 \2 (n—1)
[> simplify (%) ;

B
[» sum(i/24(n+1-i), i=2..n) + 1/2%(n-1):

n—1+ 1

2(?@—)

What if we don't know the probabilities?

1. Sort the list so we can at least improve the average time for
unsuccessful search
Self-organizing list:
— Elements accessed more frequently move toward the front of the list;
elements accessed less frequently toward the rear.
— Strategies:
* Move ahead one position (exchange with previous element)
e Exchange with first element
e Move to Front (only efficient if the list is a linked list)
What we are actually likely to know is frequencies in previous
searches.

Our best estimate of the probabilities will be proportional to the
frequencies, so we can use frequencies instead of probabilities.

0>

Optimal Binary Search Trees

Suppose we have n distinct data keys K;, K,, ..., K,
(in increasing order) that we wish to arrange into
a Binary Search Tree

Suppose we know the probabilities that a
successful search will end up at K, and the
probabilities that the key in an unsuccessful
search will be larger than K, and smaller than K.,

This time the expected number of probes for a
successful or unsuccessful search depends on the
shape of the tree and where the search ends up , .

General principle? v

10

Example

e For now we consider only successful searches,
with probabilities A(0.2), B(0.3), C(0.1), D(0.4).

e How many different ways to arrange these into
a BST? Generalize for N distinct values.

e What would be the worst-case arrangement
for the expected number of probes?

— For simplicity, we'll multiply all of the probabilities
by 10 so we can deal with integers.

e Try some other arrangements: .
Opposite, Greedy, Better, Best? v

11

