

Dynamic programming

- Used for problems with recursive solutions and overlapping subproblems
- Typically, we save (memoize) solutions to the subproblems, to avoid recomputing them.
- Previously seen example: Fib(n)

Dynamic Programming Example

- Binomial Coefficients:
- C(n, k) is the coefficient of x^k in the expansion of (1+x)ⁿ
- C(n,0) = C(n, n) = 1.
- If 0 < k < n, C(n, k) = C(n-1, k) + C(n-1, k-1)
- Can show by induction that the "usual" factorial formula for C(n, k) follows from this recursive definition.
 - An upcoming homework problem.
- If we don't cache values as we compute them, this can take a lot of time, because of duplicate (overlapping) computation.

Computing a binomial coefficient

Binomial coefficients are coefficients of the binomial formula: $(a + b)^n = C(n,0)a^nb^0 + ... + C(n,k)a^{n-k}b^k + ... + C(n,n)a^0b^n$

Recurrence:
$$C(n,k) = C(n-1,k) + C(n-1,k-1)$$
 for $n > k > 0$
 $C(n,0) = 1$, $C(n,n) = 1$ for $n \ge 0$

Value of C(n,k) can be computed by filling in a table:

Computing C(n, k):

ALGORITHM Binomial(n, k)//Computes C(n, k) by the dynamic programming algorithm //Input: A pair of nonnegative integers $n \ge k \ge 0$ //Output: The value of C(n, k)for $i \leftarrow 0$ to n do for $j \leftarrow 0$ to $\min(i, k)$ do if j = 0 or j = i $C[i, j] \leftarrow 1$ else $C[i, j] \leftarrow C[i - 1, j - 1] + C[i - 1, j]$ return C[n, k]

Time efficiency: $\Theta(nk)$

Space efficiency: $\Theta(nk)$

If we are computing C(n, k) for many different n and k values, we could cache the table between calls.

Elementary Dyn. Prog. problems

- These are in Section 8.1 of Levitin
- Simple and straightforward.
- I am going to have you read them on your own.
 - Coin-row
 - Change-making
 - Coin Collection

Transitive closure of a directed graph

- We ask this question for a given directed graph G: for each of vertices, (A,B), is there a path from A to B in G?
- Start with the boolean adjacency matrix A for the n-node graph G. A[i][j] is 1 if and only if G has a directed edge from node i to node j.
- The transitive closure of G is the boolean matrix T such that
 T[i][j] is 1 iff there is a nontrivial directed path from node i to
 node i in G.
- If we use boolean adjacency matrices, what does M² represent? M³?
- In boolean matrix multiplication, + stands for **or**, and * stands for **and**

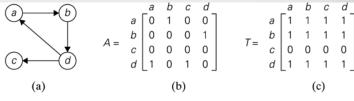


FIGURE 8.2 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

Transitive closure via multiplication

- Again, using + for **or**, we get $T = M + M^2 + M^3 + ...$
- Can we limit it to a finite operation?
- We can stop at Mⁿ⁻¹.
 - How do we know this?
- Number of numeric multiplications for solving the whole problem?

Warshall's Algorithm for Transitive Closure

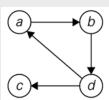
- · Similar to binomial coefficients algorithm
- Assume that the vertices have been numbered V₁, V₂, ..., V_n,
- Graph represented by a boolean adjacency matrix M.
- Numbering is arbitrary, but is fixed throughout the algorithm.
- Define the boolean matrix R(k) as follows:
 - $R^{(k)}[i][j]$ is 1 iff there is a path from v_i to v_j in the directed graph that has the form $v_i = w_0 \rightarrow w_1 \rightarrow ... \rightarrow w_s = v_i$, where
 - s >=1, and
 - for all t = 1, ..., s-1, the w_t is v_m for some m ≤ k
 i.e, none of the intermediate vertices are numbered higher than k
- What is R⁽⁰⁾?
- Note that the transitive closure T is R⁽ⁿ⁾

R^(k) example

• $R^{(k)}[i][j]$ is 1 iff there is a path in the directed graph

$$v_i = w_0 \rightarrow w_1 \rightarrow ... \rightarrow w_s = v_j$$
, where $-s > 1$, and

- for all t = 2, ..., s-1, the w_t is v_m for some m ≤ k
- Example: assuming that the node numbering is in alphabetical order, calculate R⁽⁰⁾, R⁽¹⁾, and R⁽²⁾



$$A = \begin{array}{c} a & b & c & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ c & d & 1 & 0 & 1 & 0 \end{array}$$

Quickly Calculating R(k)

- Back to the matrix multiplication approach:
 - How much time did it take to compute A^k[i][i], once we have Ak-1?
- Can we do better when calculating R^(k)[i][j] from R^(k-1)?
- How can R^(k)[i][j] be 1?
 - either $R^{(k-1)}[i][i]$ is 1, or
 - there is a path from v_i to v_k that uses no vertices numbered higher than v_{k-1} , and a similar path from v_k to v_i .
- Thus R^(k)[i][i] is $R^{(k-1)}[i][j]$ or ($R^{(k-1)}[i][k]$ and $R^{(k-1)}[k][i]$)
- Note that this can be calculated in constant time if we already have the three vales from the right-hand side.
- Time for calculating $R^{(k)}$ from $R^{(k-1)}$?
- Total time for Warshall's algorithm?


```
ALGORITHM Warshall(A[1..n, 1..n])
```

//Implements Warshall's algorithm for computing the transitive closure //Input: The adjacency matrix A of a digraph with n vertices

//Output: The transitive closure of the digraph

$$R^{(0)} \leftarrow A$$

for
$$k \leftarrow 1$$
 to n do

for
$$i \leftarrow 1$$
 to n do

for
$$j \leftarrow 1$$
 to n do

$$R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] \text{ or } (R^{(k-1)}[i, k] \text{ and } R^{(k-1)}[k, j])$$

return $R^{(n)}$

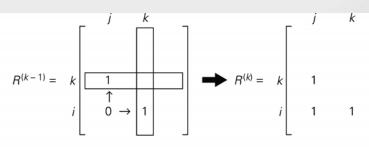
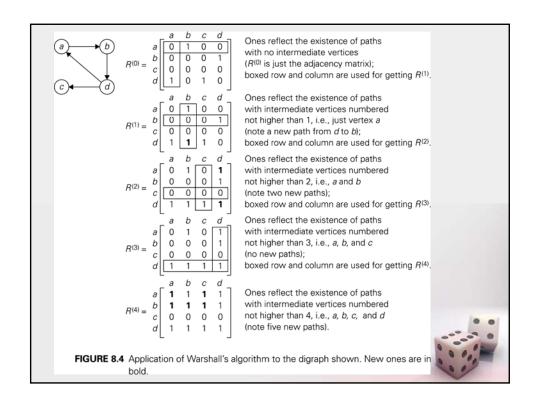


FIGURE 8.3 Rule for changing zeros in Warshall's algorithm



Floyd's algorithm

- All-pairs shortest path
- A network is a graph whose edges are labeled by (usually) non-negative numbers. We store those edge numbers as the values in the adjacency matrix for the graph
- A **shortest path** from vertex u to vertex v is a path whose edge sum is smallest.
- Floyd's algorithm calculates the shortest path from u to v for each pair (u, v) od vertices.
- It is so much like Warshall's algorithm, that I am confident you can quickly get the details from the textbook after you understand Warshall's algorithm.

Dynamic Programming Example

OPTIMAL BINARY SEARCH TREES

Warmup: Optimal linked list order

- Suppose we have n distinct data items
 x₁, x₂, ..., x_n in a linked list.
- Also suppose that we know the probabilities p_1 , p_2 , ..., p_n that each of these items is the item we'll be searching for.
- Questions we'll attempt to answer:
 - What is the expected number of probes before a successful search completes?
 - How can we minimize this number?
 - What about an unsuccessful search?

Examples

- p_i = 1/n for each i.
 - What is the expected number of probes?
- $p_1 = \frac{1}{2}$, $p_2 = \frac{1}{4}$, ..., $p_{n-1} = \frac{1}{2^{n-1}}$, $p_n = \frac{1}{2^{n-1}}$ expected number of probes:

$$\sum_{i=1}^{n-1} \frac{i}{2^i} + \frac{n}{2^{n-1}} = 2 - \frac{1}{2^{n-1}} < 2$$

• What if the same items are placed into the list in the opposite order?

$$\sum_{i=2}^{n} \frac{i}{2^{n+1-i}} + \frac{1}{2^{n-1}} = n - 1 + \frac{1}{2^{n-1}}$$

- The next slide shows the evaluation of the last two summations in Maple.
 - Good practice for you? prove them by induction

Calculations for previous slide

```
> sum(i/2^i, i=1..n-1) + n/2^(n-1);
```

$$-2\left(\frac{1}{2}\right)^{n}n-2\left(\frac{1}{2}\right)^{n}+2+\frac{n}{2^{(n-1)}}$$

> simplify(%);

$$-2^{(1-n)}+2$$

> sum(i/2^(n+1-i), i=2..n) + 1/2^(n-1);

$$n-1+\frac{1}{2^{(n-1)}}$$

What if we don't know the probabilities?

- Sort the list so we can at least improve the average time for unsuccessful search
- 2. Self-organizing list:
 - Elements accessed more frequently move toward the front of the list;
 elements accessed less frequently toward the rear.
 - Strategies:
 - Move ahead one position (exchange with previous element)
 - Exchange with first element
 - Move to Front (only efficient if the list is a linked list)
- What we are actually likely to know is frequencies in previous searches.
- Our best estimate of the probabilities will be proportional to the frequencies, so we can use frequencies instead of probabilities.

Optimal Binary Search Trees

- Suppose we have n distinct data keys K₁, K₂, ..., K_n (in increasing order) that we wish to arrange into a Binary Search Tree
- Suppose we know the probabilities that a successful search will end up at K_i and the probabilities that the key in an unsuccessful search will be larger than K_i and smaller than K_{i+1}
- This time the expected number of probes for a successful or unsuccessful search depends on the shape of the tree and where the search ends up
- General principle?

Example

- For now we consider only successful searches, with probabilities A(0.2), B(0.3), C(0.1), D(0.4).
- How many different ways to arrange these into a BST? Generalize for N distinct values.
- What would be the worst-case arrangement for the expected number of probes?
 - For simplicity, we'll multiply all of the probabilities by 10 so we can deal with integers.
- Try some other arrangements:
 Opposite, Greedy, Better, Best?

